MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothomex Structured version   Unicode version

Theorem grothomex 9100
Description: The Tarski-Grothendieck Axiom implies the Axiom of Infinity (in the form of omex 7953). Note that our proof depends on neither the Axiom of Infinity nor Regularity. (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothomex  |-  om  e.  _V

Proof of Theorem grothomex
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r111 8086 . . . 4  |-  R1 : On
-1-1-> _V
2 omsson 6583 . . . 4  |-  om  C_  On
3 f1ores 5756 . . . 4  |-  ( ( R1 : On -1-1-> _V  /\ 
om  C_  On )  -> 
( R1  |`  om ) : om -1-1-onto-> ( R1 " om ) )
41, 2, 3mp2an 672 . . 3  |-  ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )
5 f1of1 5741 . . 3  |-  ( ( R1  |`  om ) : om -1-1-onto-> ( R1 " om )  ->  ( R1  |`  om ) : om -1-1-> ( R1 " om ) )
64, 5ax-mp 5 . 2  |-  ( R1  |`  om ) : om -1-1-> ( R1 " om )
7 0ex 4523 . . . 4  |-  (/)  e.  _V
8 eleq1 2523 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  y  <->  (/)  e.  y ) )
98anbi1d 704 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <-> 
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
109exbidv 1681 . . . 4  |-  ( x  =  (/)  ->  ( E. y ( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )  <->  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y ) ) )
11 axgroth6 9099 . . . . 5  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y
( z  ~<  y  ->  z  e.  y ) )
12 simpr 461 . . . . . . . 8  |-  ( ( ~P z  C_  y  /\  ~P z  e.  y )  ->  ~P z  e.  y )
1312ralimi 2814 . . . . . . 7  |-  ( A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y
)  ->  A. z  e.  y  ~P z  e.  y )
1413anim2i 569 . . . . . 6  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y ) )  ->  (
x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
15143adant3 1008 . . . . 5  |-  ( ( x  e.  y  /\  A. z  e.  y  ( ~P z  C_  y  /\  ~P z  e.  y )  /\  A. z  e.  ~P  y ( z 
~<  y  ->  z  e.  y ) )  -> 
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y ) )
1611, 15eximii 1628 . . . 4  |-  E. y
( x  e.  y  /\  A. z  e.  y  ~P z  e.  y )
177, 10, 16vtocl 3123 . . 3  |-  E. y
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )
18 r1fnon 8078 . . . . . . . . 9  |-  R1  Fn  On
19 fvelimab 5849 . . . . . . . . 9  |-  ( ( R1  Fn  On  /\  om  C_  On )  ->  (
w  e.  ( R1
" om )  <->  E. x  e.  om  ( R1 `  x )  =  w ) )
2018, 2, 19mp2an 672 . . . . . . . 8  |-  ( w  e.  ( R1 " om )  <->  E. x  e.  om  ( R1 `  x )  =  w )
21 fveq2 5792 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( R1
`  x )  =  ( R1 `  (/) ) )
2221eleq1d 2520 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( R1 `  x )  e.  y  <->  ( R1 `  (/) )  e.  y
) )
23 fveq2 5792 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( R1 `  x )  =  ( R1 `  w
) )
2423eleq1d 2520 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( R1 `  x
)  e.  y  <->  ( R1 `  w )  e.  y ) )
25 fveq2 5792 . . . . . . . . . . . 12  |-  ( x  =  suc  w  -> 
( R1 `  x
)  =  ( R1
`  suc  w )
)
2625eleq1d 2520 . . . . . . . . . . 11  |-  ( x  =  suc  w  -> 
( ( R1 `  x )  e.  y  <-> 
( R1 `  suc  w )  e.  y ) )
27 r10 8079 . . . . . . . . . . . . . 14  |-  ( R1
`  (/) )  =  (/)
2827eleq1i 2528 . . . . . . . . . . . . 13  |-  ( ( R1 `  (/) )  e.  y  <->  (/)  e.  y )
2928biimpri 206 . . . . . . . . . . . 12  |-  ( (/)  e.  y  ->  ( R1
`  (/) )  e.  y )
3029adantr 465 . . . . . . . . . . 11  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  (/) )  e.  y )
31 pweq 3964 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R1 `  w )  ->  ~P z  =  ~P ( R1 `  w ) )
3231eleq1d 2520 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R1 `  w )  ->  ( ~P z  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3332rspccv 3169 . . . . . . . . . . . . . 14  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  ->  ~P ( R1 `  w
)  e.  y ) )
34 nnon 6585 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  om  ->  w  e.  On )
35 r1suc 8081 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  On  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3634, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( w  e.  om  ->  ( R1 `  suc  w )  =  ~P ( R1
`  w ) )
3736eleq1d 2520 . . . . . . . . . . . . . . 15  |-  ( w  e.  om  ->  (
( R1 `  suc  w )  e.  y  <->  ~P ( R1 `  w
)  e.  y ) )
3837biimprcd 225 . . . . . . . . . . . . . 14  |-  ( ~P ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) )
3933, 38syl6 33 . . . . . . . . . . . . 13  |-  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w
)  e.  y  -> 
( w  e.  om  ->  ( R1 `  suc  w )  e.  y ) ) )
4039com3r 79 . . . . . . . . . . . 12  |-  ( w  e.  om  ->  ( A. z  e.  y  ~P z  e.  y  ->  ( ( R1 `  w )  e.  y  ->  ( R1 `  suc  w )  e.  y ) ) )
4140adantld 467 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( ( R1
`  w )  e.  y  ->  ( R1 ` 
suc  w )  e.  y ) ) )
4222, 24, 26, 30, 41finds2 6607 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 `  x )  e.  y ) )
43 eleq1 2523 . . . . . . . . . . 11  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  <->  w  e.  y ) )
4443biimpd 207 . . . . . . . . . 10  |-  ( ( R1 `  x )  =  w  ->  (
( R1 `  x
)  e.  y  ->  w  e.  y )
)
4542, 44syl9 71 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( R1 `  x
)  =  w  -> 
( ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) ) )
4645rexlimiv 2934 . . . . . . . 8  |-  ( E. x  e.  om  ( R1 `  x )  =  w  ->  ( ( (/) 
e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4720, 46sylbi 195 . . . . . . 7  |-  ( w  e.  ( R1 " om )  ->  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  w  e.  y ) )
4847com12 31 . . . . . 6  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( w  e.  ( R1 " om )  ->  w  e.  y ) )
4948ssrdv 3463 . . . . 5  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  C_  y )
50 vex 3074 . . . . . 6  |-  y  e. 
_V
5150ssex 4537 . . . . 5  |-  ( ( R1 " om )  C_  y  ->  ( R1 " om )  e.  _V )
5249, 51syl 16 . . . 4  |-  ( (
(/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e.  _V )
5352exlimiv 1689 . . 3  |-  ( E. y ( (/)  e.  y  /\  A. z  e.  y  ~P z  e.  y )  ->  ( R1 " om )  e. 
_V )
5417, 53ax-mp 5 . 2  |-  ( R1
" om )  e. 
_V
55 f1dmex 6650 . 2  |-  ( ( ( R1  |`  om ) : om -1-1-> ( R1 " om )  /\  ( R1 " om )  e. 
_V )  ->  om  e.  _V )
566, 54, 55mp2an 672 1  |-  om  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2795   E.wrex 2796   _Vcvv 3071    C_ wss 3429   (/)c0 3738   ~Pcpw 3961   class class class wbr 4393   Oncon0 4820   suc csuc 4822    |` cres 4943   "cima 4944    Fn wfn 5514   -1-1->wf1 5516   -1-1-onto->wf1o 5518   ` cfv 5519   omcom 6579    ~< csdm 7412   R1cr1 8073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-groth 9094
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-om 6580  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-r1 8075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator