MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Unicode version

Theorem grothac 8993
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 8634). This can be put in a more conventional form via ween 8201 and dfac8 8300. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac  |-  dom  card  =  _V

Proof of Theorem grothac
Dummy variables  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axgroth6 8991 . . . 4  |-  E. u
( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )
2 pweq 3860 . . . . . . . . . . 11  |-  ( x  =  y  ->  ~P x  =  ~P y
)
32sseq1d 3380 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ~P x  C_  u  <->  ~P y  C_  u ) )
42eleq1d 2507 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ~P x  e.  u  <->  ~P y  e.  u ) )
53, 4anbi12d 705 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ~P x  C_  u  /\  ~P x  e.  u )  <->  ( ~P y  C_  u  /\  ~P y  e.  u )
) )
65rspcva 3068 . . . . . . . 8  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( ~P y  C_  u  /\  ~P y  e.  u
) )
76simpld 456 . . . . . . 7  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ~P y  C_  u )
8 rabss 3426 . . . . . . . 8  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  <->  A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
) )
98biimpri 206 . . . . . . 7  |-  ( A. x  e.  ~P  u
( x  ~<  u  ->  x  e.  u )  ->  { x  e. 
~P u  |  x 
~<  u }  C_  u
)
10 vex 2973 . . . . . . . . . . 11  |-  y  e. 
_V
1110canth2 7460 . . . . . . . . . 10  |-  y  ~<  ~P y
12 sdomdom 7333 . . . . . . . . . 10  |-  ( y 
~<  ~P y  ->  y  ~<_  ~P y )
1311, 12ax-mp 5 . . . . . . . . 9  |-  y  ~<_  ~P y
14 vex 2973 . . . . . . . . . 10  |-  u  e. 
_V
15 ssdomg 7351 . . . . . . . . . 10  |-  ( u  e.  _V  ->  ( ~P y  C_  u  ->  ~P y  ~<_  u )
)
1614, 15ax-mp 5 . . . . . . . . 9  |-  ( ~P y  C_  u  ->  ~P y  ~<_  u )
17 domtr 7358 . . . . . . . . 9  |-  ( ( y  ~<_  ~P y  /\  ~P y  ~<_  u )  -> 
y  ~<_  u )
1813, 16, 17sylancr 658 . . . . . . . 8  |-  ( ~P y  C_  u  ->  y  ~<_  u )
19 tskwe 8116 . . . . . . . . 9  |-  ( ( u  e.  _V  /\  { x  e.  ~P u  |  x  ~<  u }  C_  u )  ->  u  e.  dom  card )
2014, 19mpan 665 . . . . . . . 8  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  u  e.  dom  card )
21 numdom 8204 . . . . . . . . 9  |-  ( ( u  e.  dom  card  /\  y  ~<_  u )  -> 
y  e.  dom  card )
2221expcom 435 . . . . . . . 8  |-  ( y  ~<_  u  ->  ( u  e.  dom  card  ->  y  e. 
dom  card ) )
2318, 20, 22syl2im 38 . . . . . . 7  |-  ( ~P y  C_  u  ->  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  y  e.  dom  card )
)
247, 9, 23syl2im 38 . . . . . 6  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
)  ->  y  e.  dom  card ) )
25243impia 1179 . . . . 5  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )  -> 
y  e.  dom  card )
2625exlimiv 1693 . . . 4  |-  ( E. u ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u )  /\  A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
) )  ->  y  e.  dom  card )
271, 26ax-mp 5 . . 3  |-  y  e. 
dom  card
2827, 102th 239 . 2  |-  ( y  e.  dom  card  <->  y  e.  _V )
2928eqriv 2438 1  |-  dom  card  =  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970    C_ wss 3325   ~Pcpw 3857   class class class wbr 4289   dom cdm 4836    ~<_ cdom 7304    ~< csdm 7305   cardccrd 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-groth 8986
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-recs 6828  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-card 8105
This theorem is referenced by:  axgroth3  8994
  Copyright terms: Public domain W3C validator