HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  golem1 Structured version   Unicode version

Theorem golem1 25498
Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.)
Hypotheses
Ref Expression
golem1.1  |-  A  e. 
CH
golem1.2  |-  B  e. 
CH
golem1.3  |-  C  e. 
CH
golem1.4  |-  F  =  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
golem1.5  |-  G  =  ( ( _|_ `  B
)  vH  ( B  i^i  C ) )
golem1.6  |-  H  =  ( ( _|_ `  C
)  vH  ( C  i^i  A ) )
golem1.7  |-  D  =  ( ( _|_ `  B
)  vH  ( B  i^i  A ) )
golem1.8  |-  R  =  ( ( _|_ `  C
)  vH  ( C  i^i  B ) )
golem1.9  |-  S  =  ( ( _|_ `  A
)  vH  ( A  i^i  C ) )
Assertion
Ref Expression
golem1  |-  ( f  e.  States  ->  ( ( ( f `  F )  +  ( f `  G ) )  +  ( f `  H
) )  =  ( ( ( f `  D )  +  ( f `  R ) )  +  ( f `
 S ) ) )

Proof of Theorem golem1
StepHypRef Expression
1 golem1.1 . . . . . . . . . . 11  |-  A  e. 
CH
21choccli 24533 . . . . . . . . . 10  |-  ( _|_ `  A )  e.  CH
3 stcl 25443 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  A )  e.  CH  ->  ( f `  ( _|_ `  A ) )  e.  RR ) )
42, 3mpi 17 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  A ) )  e.  RR )
54recnd 9400 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  A ) )  e.  CC )
6 golem1.2 . . . . . . . . . . 11  |-  B  e. 
CH
76choccli 24533 . . . . . . . . . 10  |-  ( _|_ `  B )  e.  CH
8 stcl 25443 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  B )  e.  CH  ->  ( f `  ( _|_ `  B ) )  e.  RR ) )
97, 8mpi 17 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  B ) )  e.  RR )
109recnd 9400 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  B ) )  e.  CC )
11 golem1.3 . . . . . . . . . . 11  |-  C  e. 
CH
1211choccli 24533 . . . . . . . . . 10  |-  ( _|_ `  C )  e.  CH
13 stcl 25443 . . . . . . . . . 10  |-  ( f  e.  States  ->  ( ( _|_ `  C )  e.  CH  ->  ( f `  ( _|_ `  C ) )  e.  RR ) )
1412, 13mpi 17 . . . . . . . . 9  |-  ( f  e.  States  ->  ( f `  ( _|_ `  C ) )  e.  RR )
1514recnd 9400 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( _|_ `  C ) )  e.  CC )
165, 10, 15addassd 9396 . . . . . . 7  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `
 ( _|_ `  C
) ) )  =  ( ( f `  ( _|_ `  A ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) ) ) )
1710, 15addcld 9393 . . . . . . . 8  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  e.  CC )
185, 17addcomd 9559 . . . . . . 7  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  A
) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) ) )  =  ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) ) )
1916, 18eqtrd 2465 . . . . . 6  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `
 ( _|_ `  C
) ) )  =  ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) ) )
2019oveq1d 6095 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
215, 10addcld 9393 . . . . . 6  |-  ( f  e.  States  ->  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( _|_ `  B ) ) )  e.  CC )
221, 6chincli 24686 . . . . . . . . 9  |-  ( A  i^i  B )  e. 
CH
23 stcl 25443 . . . . . . . . 9  |-  ( f  e.  States  ->  ( ( A  i^i  B )  e. 
CH  ->  ( f `  ( A  i^i  B ) )  e.  RR ) )
2422, 23mpi 17 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( A  i^i  B ) )  e.  RR )
2524recnd 9400 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( A  i^i  B ) )  e.  CC )
266, 11chincli 24686 . . . . . . . . 9  |-  ( B  i^i  C )  e. 
CH
27 stcl 25443 . . . . . . . . 9  |-  ( f  e.  States  ->  ( ( B  i^i  C )  e. 
CH  ->  ( f `  ( B  i^i  C ) )  e.  RR ) )
2826, 27mpi 17 . . . . . . . 8  |-  ( f  e.  States  ->  ( f `  ( B  i^i  C ) )  e.  RR )
2928recnd 9400 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( B  i^i  C ) )  e.  CC )
3025, 29addcld 9393 . . . . . 6  |-  ( f  e.  States  ->  ( ( f `
 ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  e.  CC )
3111, 1chincli 24686 . . . . . . . 8  |-  ( C  i^i  A )  e. 
CH
32 stcl 25443 . . . . . . . 8  |-  ( f  e.  States  ->  ( ( C  i^i  A )  e. 
CH  ->  ( f `  ( C  i^i  A ) )  e.  RR ) )
3331, 32mpi 17 . . . . . . 7  |-  ( f  e.  States  ->  ( f `  ( C  i^i  A ) )  e.  RR )
3433recnd 9400 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( C  i^i  A ) )  e.  CC )
3521, 30, 15, 34add4d 9581 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
3617, 30, 5, 34add4d 9581 . . . . 5  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( f `  ( _|_ `  A ) ) )  +  ( ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
3720, 35, 363eqtr4d 2475 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
385, 25, 10, 29add4d 9581 . . . . 5  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( _|_ `  B
) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
3938oveq1d 6095 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( _|_ `  B ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
4010, 25, 15, 29add4d 9581 . . . . 5  |-  ( f  e.  States  ->  ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( _|_ `  C
) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
4140oveq1d 6095 . . . 4  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( _|_ `  C ) ) )  +  ( ( f `  ( A  i^i  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
4237, 39, 413eqtr4d 2475 . . 3  |-  ( f  e.  States  ->  ( ( ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( C  i^i  A ) ) ) )  =  ( ( ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( C  i^i  A ) ) ) ) )
431, 6stji1i 25469 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  B ) ) ) )
446, 11stji1i 25469 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( B  i^i  C ) ) ) )
4543, 44oveq12d 6098 . . . 4  |-  ( f  e.  States  ->  ( ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  C ) ) ) )  =  ( ( ( f `  ( _|_ `  A ) )  +  ( f `
 ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
4611, 1stji1i 25469 . . . 4  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( C  i^i  A ) ) ) )
4745, 46oveq12d 6098 . . 3  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
486, 1stji1i 25469 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( B  i^i  A ) ) ) )
49 incom 3531 . . . . . . . 8  |-  ( B  i^i  A )  =  ( A  i^i  B
)
5049fveq2i 5682 . . . . . . 7  |-  ( f `
 ( B  i^i  A ) )  =  ( f `  ( A  i^i  B ) )
5150oveq2i 6091 . . . . . 6  |-  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( B  i^i  A ) ) )  =  ( ( f `  ( _|_ `  B ) )  +  ( f `  ( A  i^i  B ) ) )
5248, 51syl6eq 2481 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  =  ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( A  i^i  B ) ) ) )
5311, 6stji1i 25469 . . . . . 6  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( C  i^i  B ) ) ) )
54 incom 3531 . . . . . . . 8  |-  ( C  i^i  B )  =  ( B  i^i  C
)
5554fveq2i 5682 . . . . . . 7  |-  ( f `
 ( C  i^i  B ) )  =  ( f `  ( B  i^i  C ) )
5655oveq2i 6091 . . . . . 6  |-  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( C  i^i  B ) ) )  =  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) )
5753, 56syl6eq 2481 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) )  =  ( ( f `
 ( _|_ `  C
) )  +  ( f `  ( B  i^i  C ) ) ) )
5852, 57oveq12d 6098 . . . 4  |-  ( f  e.  States  ->  ( ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  B ) ) ) )  =  ( ( ( f `  ( _|_ `  B ) )  +  ( f `
 ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `
 ( B  i^i  C ) ) ) ) )
591, 11stji1i 25469 . . . . 5  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( A  i^i  C ) ) ) )
60 incom 3531 . . . . . . 7  |-  ( A  i^i  C )  =  ( C  i^i  A
)
6160fveq2i 5682 . . . . . 6  |-  ( f `
 ( A  i^i  C ) )  =  ( f `  ( C  i^i  A ) )
6261oveq2i 6091 . . . . 5  |-  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( A  i^i  C ) ) )  =  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( C  i^i  A ) ) )
6359, 62syl6eq 2481 . . . 4  |-  ( f  e.  States  ->  ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  C ) ) )  =  ( ( f `
 ( _|_ `  A
) )  +  ( f `  ( C  i^i  A ) ) ) )
6458, 63oveq12d 6098 . . 3  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )  +  ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) )  =  ( ( ( ( f `
 ( _|_ `  B
) )  +  ( f `  ( A  i^i  B ) ) )  +  ( ( f `  ( _|_ `  C ) )  +  ( f `  ( B  i^i  C ) ) ) )  +  ( ( f `  ( _|_ `  A ) )  +  ( f `  ( C  i^i  A ) ) ) ) )
6542, 47, 643eqtr4d 2475 . 2  |-  ( f  e.  States  ->  ( ( ( f `  ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )  =  ( ( ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  +  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )  +  ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) ) )
66 golem1.4 . . . . 5  |-  F  =  ( ( _|_ `  A
)  vH  ( A  i^i  B ) )
6766fveq2i 5682 . . . 4  |-  ( f `
 F )  =  ( f `  (
( _|_ `  A
)  vH  ( A  i^i  B ) ) )
68 golem1.5 . . . . 5  |-  G  =  ( ( _|_ `  B
)  vH  ( B  i^i  C ) )
6968fveq2i 5682 . . . 4  |-  ( f `
 G )  =  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  C ) ) )
7067, 69oveq12i 6092 . . 3  |-  ( ( f `  F )  +  ( f `  G ) )  =  ( ( f `  ( ( _|_ `  A
)  vH  ( A  i^i  B ) ) )  +  ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  C ) ) ) )
71 golem1.6 . . . 4  |-  H  =  ( ( _|_ `  C
)  vH  ( C  i^i  A ) )
7271fveq2i 5682 . . 3  |-  ( f `
 H )  =  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  A ) ) )
7370, 72oveq12i 6092 . 2  |-  ( ( ( f `  F
)  +  ( f `
 G ) )  +  ( f `  H ) )  =  ( ( ( f `
 ( ( _|_ `  A )  vH  ( A  i^i  B ) ) )  +  ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  C ) ) ) )  +  ( f `  ( ( _|_ `  C )  vH  ( C  i^i  A ) ) ) )
74 golem1.7 . . . . 5  |-  D  =  ( ( _|_ `  B
)  vH  ( B  i^i  A ) )
7574fveq2i 5682 . . . 4  |-  ( f `
 D )  =  ( f `  (
( _|_ `  B
)  vH  ( B  i^i  A ) ) )
76 golem1.8 . . . . 5  |-  R  =  ( ( _|_ `  C
)  vH  ( C  i^i  B ) )
7776fveq2i 5682 . . . 4  |-  ( f `
 R )  =  ( f `  (
( _|_ `  C
)  vH  ( C  i^i  B ) ) )
7875, 77oveq12i 6092 . . 3  |-  ( ( f `  D )  +  ( f `  R ) )  =  ( ( f `  ( ( _|_ `  B
)  vH  ( B  i^i  A ) ) )  +  ( f `  ( ( _|_ `  C
)  vH  ( C  i^i  B ) ) ) )
79 golem1.9 . . . 4  |-  S  =  ( ( _|_ `  A
)  vH  ( A  i^i  C ) )
8079fveq2i 5682 . . 3  |-  ( f `
 S )  =  ( f `  (
( _|_ `  A
)  vH  ( A  i^i  C ) ) )
8178, 80oveq12i 6092 . 2  |-  ( ( ( f `  D
)  +  ( f `
 R ) )  +  ( f `  S ) )  =  ( ( ( f `
 ( ( _|_ `  B )  vH  ( B  i^i  A ) ) )  +  ( f `
 ( ( _|_ `  C )  vH  ( C  i^i  B ) ) ) )  +  ( f `  ( ( _|_ `  A )  vH  ( A  i^i  C ) ) ) )
8265, 73, 813eqtr4g 2490 1  |-  ( f  e.  States  ->  ( ( ( f `  F )  +  ( f `  G ) )  +  ( f `  H
) )  =  ( ( ( f `  D )  +  ( f `  R ) )  +  ( f `
 S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755    i^i cin 3315   ` cfv 5406  (class class class)co 6080   RRcr 9269    + caddc 9273   CHcch 24154   _|_cort 24155    vH chj 24158   Statescst 24187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cc 8592  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350  ax-hilex 24224  ax-hfvadd 24225  ax-hvcom 24226  ax-hvass 24227  ax-hv0cl 24228  ax-hvaddid 24229  ax-hfvmul 24230  ax-hvmulid 24231  ax-hvmulass 24232  ax-hvdistr1 24233  ax-hvdistr2 24234  ax-hvmul0 24235  ax-hfi 24304  ax-his1 24307  ax-his2 24308  ax-his3 24309  ax-his4 24310  ax-hcompl 24427
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-rlim 12951  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-cn 18673  df-cnp 18674  df-lm 18675  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cfil 20608  df-cau 20609  df-cmet 20610  df-grpo 23501  df-gid 23502  df-ginv 23503  df-gdiv 23504  df-ablo 23592  df-subgo 23612  df-vc 23747  df-nv 23793  df-va 23796  df-ba 23797  df-sm 23798  df-0v 23799  df-vs 23800  df-nmcv 23801  df-ims 23802  df-dip 23919  df-ssp 23943  df-ph 24036  df-cbn 24087  df-hnorm 24193  df-hba 24194  df-hvsub 24196  df-hlim 24197  df-hcau 24198  df-sh 24432  df-ch 24447  df-oc 24478  df-ch0 24479  df-st 25438
This theorem is referenced by:  golem2  25499
  Copyright terms: Public domain W3C validator