MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimfn Structured version   Unicode version

Theorem gimfn 16123
Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
gimfn  |- GrpIso  Fn  ( Grp  X.  Grp )

Proof of Theorem gimfn
Dummy variables  g 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gim 16121 . 2  |- GrpIso  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  e.  ( s 
GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) } )
2 ovex 6310 . . 3  |-  ( s 
GrpHom  t )  e.  _V
32rabex 4598 . 2  |-  { g  e.  ( s  GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) }  e.  _V
41, 3fnmpt2i 6854 1  |- GrpIso  Fn  ( Grp  X.  Grp )
Colors of variables: wff setvar class
Syntax hints:   {crab 2818    X. cxp 4997    Fn wfn 5583   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6285   Basecbs 14493   Grpcgrp 15730    GrpHom cghm 16078   GrpIso cgim 16119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-gim 16121
This theorem is referenced by:  brgic  16131  gicer  16138
  Copyright terms: Public domain W3C validator