MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimco Structured version   Unicode version

Theorem gimco 15794
Description: The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gimco  |-  ( ( F  e.  ( T GrpIso  U )  /\  G  e.  ( S GrpIso  T ) )  ->  ( F  o.  G )  e.  ( S GrpIso  U ) )

Proof of Theorem gimco
StepHypRef Expression
1 isgim2 15791 . . 3  |-  ( F  e.  ( T GrpIso  U
)  <->  ( F  e.  ( T  GrpHom  U )  /\  `' F  e.  ( U  GrpHom  T ) ) )
2 isgim2 15791 . . 3  |-  ( G  e.  ( S GrpIso  T
)  <->  ( G  e.  ( S  GrpHom  T )  /\  `' G  e.  ( T  GrpHom  S ) ) )
3 ghmco 15764 . . . . 5  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
4 cnvco 5023 . . . . . 6  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
5 ghmco 15764 . . . . . . 7  |-  ( ( `' G  e.  ( T  GrpHom  S )  /\  `' F  e.  ( U  GrpHom  T ) )  ->  ( `' G  o.  `' F )  e.  ( U  GrpHom  S ) )
65ancoms 453 . . . . . 6  |-  ( ( `' F  e.  ( U  GrpHom  T )  /\  `' G  e.  ( T  GrpHom  S ) )  ->  ( `' G  o.  `' F )  e.  ( U  GrpHom  S ) )
74, 6syl5eqel 2525 . . . . 5  |-  ( ( `' F  e.  ( U  GrpHom  T )  /\  `' G  e.  ( T  GrpHom  S ) )  ->  `' ( F  o.  G )  e.  ( U  GrpHom  S ) )
83, 7anim12i 566 . . . 4  |-  ( ( ( F  e.  ( T  GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( `' F  e.  ( U  GrpHom  T )  /\  `' G  e.  ( T  GrpHom  S ) ) )  ->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  `' ( F  o.  G )  e.  ( U  GrpHom  S ) ) )
98an4s 822 . . 3  |-  ( ( ( F  e.  ( T  GrpHom  U )  /\  `' F  e.  ( U  GrpHom  T ) )  /\  ( G  e.  ( S  GrpHom  T )  /\  `' G  e.  ( T  GrpHom  S ) ) )  ->  (
( F  o.  G
)  e.  ( S 
GrpHom  U )  /\  `' ( F  o.  G
)  e.  ( U 
GrpHom  S ) ) )
101, 2, 9syl2anb 479 . 2  |-  ( ( F  e.  ( T GrpIso  U )  /\  G  e.  ( S GrpIso  T ) )  ->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  `' ( F  o.  G )  e.  ( U  GrpHom  S ) ) )
11 isgim2 15791 . 2  |-  ( ( F  o.  G )  e.  ( S GrpIso  U
)  <->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  `' ( F  o.  G )  e.  ( U  GrpHom  S ) ) )
1210, 11sylibr 212 1  |-  ( ( F  e.  ( T GrpIso  U )  /\  G  e.  ( S GrpIso  T ) )  ->  ( F  o.  G )  e.  ( S GrpIso  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   `'ccnv 4837    o. ccom 4842  (class class class)co 6089    GrpHom cghm 15742   GrpIso cgim 15783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-map 7214  df-0g 14378  df-mnd 15413  df-mhm 15462  df-grp 15543  df-ghm 15743  df-gim 15785
This theorem is referenced by:  gictr  15801
  Copyright terms: Public domain W3C validator