MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghsubgolem Structured version   Unicode version

Theorem ghsubgolem 24010
Description: The image of a subgroup  S of group  G under a group homomorphism  F on  G is a group, and furthermore is Abelian if  S is Abelian. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ghsubgo.1  |-  ( ph  ->  S  e.  ( SubGrpOp `  G ) )
ghsubgo.2  |-  X  =  ran  G
ghsubgo.3  |-  ( ph  ->  F : X --> Y )
ghsubgo.4  |-  ( ph  ->  Y  C_  A )
ghsubgo.5  |-  ( ph  ->  O  Fn  ( A  X.  A ) )
ghsubgo.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x G y ) )  =  ( ( F `  x ) O ( F `  y ) ) )
ghsubgo.7  |-  Z  =  ran  S
ghsubgo.8  |-  W  =  ( F " Z
)
ghsubgo.9  |-  H  =  ( O  |`  ( W  X.  W ) )
Assertion
Ref Expression
ghsubgolem  |-  ( ph  ->  ( H  e.  GrpOp  /\  ( S  e.  AbelOp  ->  H  e.  AbelOp ) ) )
Distinct variable groups:    x, y, F    x, H, y    x, O, y    x, S, y   
x, W, y    x, Z, y    ph, x, y
Allowed substitution hints:    A( x, y)    G( x, y)    X( x, y)    Y( x, y)

Proof of Theorem ghsubgolem
StepHypRef Expression
1 ghsubgo.3 . . . . 5  |-  ( ph  ->  F : X --> Y )
2 ffun 5670 . . . . 5  |-  ( F : X --> Y  ->  Fun  F )
31, 2syl 16 . . . 4  |-  ( ph  ->  Fun  F )
4 ghsubgo.1 . . . . . 6  |-  ( ph  ->  S  e.  ( SubGrpOp `  G ) )
5 ghsubgo.2 . . . . . . 7  |-  X  =  ran  G
6 ghsubgo.7 . . . . . . 7  |-  Z  =  ran  S
75, 6subgornss 23946 . . . . . 6  |-  ( S  e.  ( SubGrpOp `  G
)  ->  Z  C_  X
)
84, 7syl 16 . . . . 5  |-  ( ph  ->  Z  C_  X )
9 fdm 5672 . . . . . 6  |-  ( F : X --> Y  ->  dom  F  =  X )
101, 9syl 16 . . . . 5  |-  ( ph  ->  dom  F  =  X )
118, 10sseqtr4d 3502 . . . 4  |-  ( ph  ->  Z  C_  dom  F )
12 fores 5738 . . . 4  |-  ( ( Fun  F  /\  Z  C_ 
dom  F )  -> 
( F  |`  Z ) : Z -onto-> ( F
" Z ) )
133, 11, 12syl2anc 661 . . 3  |-  ( ph  ->  ( F  |`  Z ) : Z -onto-> ( F
" Z ) )
14 ssel2 3460 . . . . . . 7  |-  ( ( Z  C_  X  /\  x  e.  Z )  ->  x  e.  X )
15 ssel2 3460 . . . . . . 7  |-  ( ( Z  C_  X  /\  y  e.  Z )  ->  y  e.  X )
1614, 15anim12dan 833 . . . . . 6  |-  ( ( Z  C_  X  /\  ( x  e.  Z  /\  y  e.  Z
) )  ->  (
x  e.  X  /\  y  e.  X )
)
178, 16sylan 471 . . . . 5  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( x  e.  X  /\  y  e.  X
) )
18 ghsubgo.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x G y ) )  =  ( ( F `  x ) O ( F `  y ) ) )
1917, 18syldan 470 . . . 4  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( F `  (
x G y ) )  =  ( ( F `  x ) O ( F `  y ) ) )
20 issubgo 23943 . . . . . . . . 9  |-  ( S  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  S  e.  GrpOp  /\  S  C_  G )
)
2120simp2bi 1004 . . . . . . . 8  |-  ( S  e.  ( SubGrpOp `  G
)  ->  S  e.  GrpOp
)
224, 21syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  GrpOp )
236grpocl 23840 . . . . . . . 8  |-  ( ( S  e.  GrpOp  /\  x  e.  Z  /\  y  e.  Z )  ->  (
x S y )  e.  Z )
24233expb 1189 . . . . . . 7  |-  ( ( S  e.  GrpOp  /\  (
x  e.  Z  /\  y  e.  Z )
)  ->  ( x S y )  e.  Z )
2522, 24sylan 471 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( x S y )  e.  Z )
26 fvres 5814 . . . . . 6  |-  ( ( x S y )  e.  Z  ->  (
( F  |`  Z ) `
 ( x S y ) )  =  ( F `  (
x S y ) ) )
2725, 26syl 16 . . . . 5  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( ( F  |`  Z ) `  (
x S y ) )  =  ( F `
 ( x S y ) ) )
286subgoov 23945 . . . . . . 7  |-  ( ( S  e.  ( SubGrpOp `  G )  /\  (
x  e.  Z  /\  y  e.  Z )
)  ->  ( x S y )  =  ( x G y ) )
294, 28sylan 471 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( x S y )  =  ( x G y ) )
3029fveq2d 5804 . . . . 5  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( F `  (
x S y ) )  =  ( F `
 ( x G y ) ) )
3127, 30eqtrd 2495 . . . 4  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( ( F  |`  Z ) `  (
x S y ) )  =  ( F `
 ( x G y ) ) )
32 fvres 5814 . . . . . 6  |-  ( x  e.  Z  ->  (
( F  |`  Z ) `
 x )  =  ( F `  x
) )
33 fvres 5814 . . . . . 6  |-  ( y  e.  Z  ->  (
( F  |`  Z ) `
 y )  =  ( F `  y
) )
3432, 33oveqan12d 6220 . . . . 5  |-  ( ( x  e.  Z  /\  y  e.  Z )  ->  ( ( ( F  |`  Z ) `  x
) O ( ( F  |`  Z ) `  y ) )  =  ( ( F `  x ) O ( F `  y ) ) )
3534adantl 466 . . . 4  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( ( ( F  |`  Z ) `  x
) O ( ( F  |`  Z ) `  y ) )  =  ( ( F `  x ) O ( F `  y ) ) )
3619, 31, 353eqtr4d 2505 . . 3  |-  ( (
ph  /\  ( x  e.  Z  /\  y  e.  Z ) )  -> 
( ( F  |`  Z ) `  (
x S y ) )  =  ( ( ( F  |`  Z ) `
 x ) O ( ( F  |`  Z ) `  y
) ) )
37 ghsubgo.9 . . . 4  |-  H  =  ( O  |`  ( W  X.  W ) )
38 ghsubgo.8 . . . . . 6  |-  W  =  ( F " Z
)
3938, 38xpeq12i 4971 . . . . 5  |-  ( W  X.  W )  =  ( ( F " Z )  X.  ( F " Z ) )
4039reseq2i 5216 . . . 4  |-  ( O  |`  ( W  X.  W
) )  =  ( O  |`  ( ( F " Z )  X.  ( F " Z
) ) )
4137, 40eqtri 2483 . . 3  |-  H  =  ( O  |`  (
( F " Z
)  X.  ( F
" Z ) ) )
42 imassrn 5289 . . . . 5  |-  ( F
" Z )  C_  ran  F
43 frn 5674 . . . . . 6  |-  ( F : X --> Y  ->  ran  F  C_  Y )
441, 43syl 16 . . . . 5  |-  ( ph  ->  ran  F  C_  Y
)
4542, 44syl5ss 3476 . . . 4  |-  ( ph  ->  ( F " Z
)  C_  Y )
46 ghsubgo.4 . . . 4  |-  ( ph  ->  Y  C_  A )
4745, 46sstrd 3475 . . 3  |-  ( ph  ->  ( F " Z
)  C_  A )
48 ghsubgo.5 . . 3  |-  ( ph  ->  O  Fn  ( A  X.  A ) )
4913, 36, 41, 6, 47, 48, 22ghgrp 24008 . 2  |-  ( ph  ->  H  e.  GrpOp )
5013adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  AbelOp )  ->  ( F  |`  Z ) : Z -onto->
( F " Z
) )
5136adantlr 714 . . . 4  |-  ( ( ( ph  /\  S  e.  AbelOp )  /\  (
x  e.  Z  /\  y  e.  Z )
)  ->  ( ( F  |`  Z ) `  ( x S y ) )  =  ( ( ( F  |`  Z ) `  x
) O ( ( F  |`  Z ) `  y ) ) )
5247adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  AbelOp )  ->  ( F " Z )  C_  A
)
5348adantr 465 . . . 4  |-  ( (
ph  /\  S  e.  AbelOp )  ->  O  Fn  ( A  X.  A ) )
54 simpr 461 . . . 4  |-  ( (
ph  /\  S  e.  AbelOp )  ->  S  e.  AbelOp )
5550, 51, 41, 6, 52, 53, 54ghablo 24009 . . 3  |-  ( (
ph  /\  S  e.  AbelOp )  ->  H  e.  AbelOp )
5655ex 434 . 2  |-  ( ph  ->  ( S  e.  AbelOp  ->  H  e.  AbelOp ) )
5749, 56jca 532 1  |-  ( ph  ->  ( H  e.  GrpOp  /\  ( S  e.  AbelOp  ->  H  e.  AbelOp ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3437    X. cxp 4947   dom cdm 4949   ran crn 4950    |` cres 4951   "cima 4952   Fun wfun 5521    Fn wfn 5522   -->wf 5523   -onto->wfo 5525   ` cfv 5527  (class class class)co 6201   GrpOpcgr 23826   AbelOpcablo 23921   SubGrpOpcsubgo 23941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-grpo 23831  df-gid 23832  df-ginv 23833  df-gdiv 23834  df-ablo 23922  df-subgo 23942
This theorem is referenced by:  ghsubgo  24011  ghsubablo  24012
  Copyright terms: Public domain W3C validator