Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomsn Structured version   Unicode version

Theorem ghomsn 27258
Description: The endomorphism of the trivial group. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypotheses
Ref Expression
ghomsn.1  |-  A  e. 
_V
ghomsn.2  |-  G  =  { <. <. A ,  A >. ,  A >. }
Assertion
Ref Expression
ghomsn  |-  (  _I  |`  { A } )  e.  ( G GrpOpHom  G )

Proof of Theorem ghomsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5671 . . 3  |-  (  _I  |`  { A } ) : { A } -1-1-onto-> { A }
2 f1of 5636 . . 3  |-  ( (  _I  |`  { A } ) : { A } -1-1-onto-> { A }  ->  (  _I  |`  { A } ) : { A } --> { A }
)
31, 2ax-mp 5 . 2  |-  (  _I  |`  { A } ) : { A } --> { A }
4 elsn 3886 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
5 elsn 3886 . . . . 5  |-  ( y  e.  { A }  <->  y  =  A )
6 fveq2 5686 . . . . . . . 8  |-  ( x  =  A  ->  (
(  _I  |`  { A } ) `  x
)  =  ( (  _I  |`  { A } ) `  A
) )
7 ghomsn.1 . . . . . . . . . 10  |-  A  e. 
_V
87snid 3900 . . . . . . . . 9  |-  A  e. 
{ A }
9 fvresi 5899 . . . . . . . . 9  |-  ( A  e.  { A }  ->  ( (  _I  |`  { A } ) `  A
)  =  A )
108, 9ax-mp 5 . . . . . . . 8  |-  ( (  _I  |`  { A } ) `  A
)  =  A
116, 10syl6eq 2486 . . . . . . 7  |-  ( x  =  A  ->  (
(  _I  |`  { A } ) `  x
)  =  A )
12 fveq2 5686 . . . . . . . 8  |-  ( y  =  A  ->  (
(  _I  |`  { A } ) `  y
)  =  ( (  _I  |`  { A } ) `  A
) )
1312, 10syl6eq 2486 . . . . . . 7  |-  ( y  =  A  ->  (
(  _I  |`  { A } ) `  y
)  =  A )
1411, 13oveqan12d 6105 . . . . . 6  |-  ( ( x  =  A  /\  y  =  A )  ->  ( ( (  _I  |`  { A } ) `
 x ) G ( (  _I  |`  { A } ) `  y
) )  =  ( A G A ) )
15 oveq12 6095 . . . . . 6  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x G y )  =  ( A G A ) )
1614, 15eqtr4d 2473 . . . . 5  |-  ( ( x  =  A  /\  y  =  A )  ->  ( ( (  _I  |`  { A } ) `
 x ) G ( (  _I  |`  { A } ) `  y
) )  =  ( x G y ) )
174, 5, 16syl2anb 479 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
( (  _I  |`  { A } ) `  x
) G ( (  _I  |`  { A } ) `  y
) )  =  ( x G y ) )
18 ghomsn.2 . . . . . . 7  |-  G  =  { <. <. A ,  A >. ,  A >. }
197grposn 23653 . . . . . . 7  |-  { <. <. A ,  A >. ,  A >. }  e.  GrpOp
2018, 19eqeltri 2508 . . . . . 6  |-  G  e. 
GrpOp
2118rneqi 5061 . . . . . . . 8  |-  ran  G  =  ran  { <. <. A ,  A >. ,  A >. }
22 opex 4551 . . . . . . . . 9  |-  <. A ,  A >.  e.  _V
2322rnsnop 5315 . . . . . . . 8  |-  ran  { <. <. A ,  A >. ,  A >. }  =  { A }
2421, 23eqtr2i 2459 . . . . . . 7  |-  { A }  =  ran  G
2524grpocl 23638 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  x  e.  { A }  /\  y  e.  { A } )  ->  (
x G y )  e.  { A }
)
2620, 25mp3an1 1301 . . . . 5  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x G y )  e.  { A }
)
27 fvresi 5899 . . . . 5  |-  ( ( x G y )  e.  { A }  ->  ( (  _I  |`  { A } ) `  (
x G y ) )  =  ( x G y ) )
2826, 27syl 16 . . . 4  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
(  _I  |`  { A } ) `  (
x G y ) )  =  ( x G y ) )
2917, 28eqtr4d 2473 . . 3  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
( (  _I  |`  { A } ) `  x
) G ( (  _I  |`  { A } ) `  y
) )  =  ( (  _I  |`  { A } ) `  (
x G y ) ) )
3029rgen2a 2777 . 2  |-  A. x  e.  { A } A. y  e.  { A }  ( ( (  _I  |`  { A } ) `  x
) G ( (  _I  |`  { A } ) `  y
) )  =  ( (  _I  |`  { A } ) `  (
x G y ) )
3124, 24elghom 23801 . . 3  |-  ( ( G  e.  GrpOp  /\  G  e.  GrpOp )  ->  (
(  _I  |`  { A } )  e.  ( G GrpOpHom  G )  <->  ( (  _I  |`  { A }
) : { A }
--> { A }  /\  A. x  e.  { A } A. y  e.  { A }  ( (
(  _I  |`  { A } ) `  x
) G ( (  _I  |`  { A } ) `  y
) )  =  ( (  _I  |`  { A } ) `  (
x G y ) ) ) ) )
3220, 20, 31mp2an 672 . 2  |-  ( (  _I  |`  { A } )  e.  ( G GrpOpHom  G )  <->  ( (  _I  |`  { A }
) : { A }
--> { A }  /\  A. x  e.  { A } A. y  e.  { A }  ( (
(  _I  |`  { A } ) `  x
) G ( (  _I  |`  { A } ) `  y
) )  =  ( (  _I  |`  { A } ) `  (
x G y ) ) ) )
333, 30, 32mpbir2an 911 1  |-  (  _I  |`  { A } )  e.  ( G GrpOpHom  G )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   _Vcvv 2967   {csn 3872   <.cop 3878    _I cid 4626   ran crn 4836    |` cres 4837   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086   GrpOpcgr 23624   GrpOpHom cghom 23795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-grpo 23629  df-ghom 23796
This theorem is referenced by:  ghomgrplem  27259
  Copyright terms: Public domain W3C validator