Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomgsg Structured version   Unicode version

Theorem ghomgsg 28508
Description: A group homomorphism from  G to  H is also a group homomorphism from  G to its image in  H. (Contributed by Paul Chapman, 3-Mar-2008.)
Hypotheses
Ref Expression
ghomgsg.1  |-  Y  =  ran  F
ghomgsg.2  |-  S  =  ( H  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
ghomgsg  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F  e.  ( G GrpOpHom  S ) )

Proof of Theorem ghomgsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ran  G  =  ran  G
2 ghomgsg.1 . . . 4  |-  Y  =  ran  F
3 ghomgsg.2 . . . 4  |-  S  =  ( H  |`  ( Y  X.  Y ) )
4 eqid 2467 . . . 4  |-  ran  S  =  ran  S
51, 2, 3, 4ghomfo 28506 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : ran  G
-onto->
ran  S )
6 fof 5793 . . 3  |-  ( F : ran  G -onto-> ran  S  ->  F : ran  G --> ran  S )
75, 6syl 16 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : ran  G --> ran  S )
8 eqid 2467 . . . . . 6  |-  ran  H  =  ran  H
91, 8elghom 25041 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
109biimp3a 1328 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) )
1110simprd 463 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) )
12 ffvelrn 6017 . . . . . . . 8  |-  ( ( F : ran  G --> ran  S  /\  x  e. 
ran  G )  -> 
( F `  x
)  e.  ran  S
)
13 ffvelrn 6017 . . . . . . . 8  |-  ( ( F : ran  G --> ran  S  /\  y  e. 
ran  G )  -> 
( F `  y
)  e.  ran  S
)
1412, 13anim12dan 835 . . . . . . 7  |-  ( ( F : ran  G --> ran  S  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( F `  x )  e.  ran  S  /\  ( F `  y )  e.  ran  S ) )
157, 14sylan 471 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( F `
 x )  e. 
ran  S  /\  ( F `  y )  e.  ran  S ) )
162, 3ghomgrp 28505 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  S  e.  (
SubGrpOp `  H ) )
174subgoov 24983 . . . . . . 7  |-  ( ( S  e.  ( SubGrpOp `  H )  /\  (
( F `  x
)  e.  ran  S  /\  ( F `  y
)  e.  ran  S
) )  ->  (
( F `  x
) S ( F `
 y ) )  =  ( ( F `
 x ) H ( F `  y
) ) )
1816, 17sylan 471 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( F `  x )  e.  ran  S  /\  ( F `  y )  e.  ran  S ) )  ->  ( ( F `
 x ) S ( F `  y
) )  =  ( ( F `  x
) H ( F `
 y ) ) )
1915, 18syldan 470 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( F `
 x ) S ( F `  y
) )  =  ( ( F `  x
) H ( F `
 y ) ) )
2019eqeq1d 2469 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( ( F `  x ) S ( F `  y ) )  =  ( F `  (
x G y ) )  <->  ( ( F `
 x ) H ( F `  y
) )  =  ( F `  ( x G y ) ) ) )
21202ralbidva 2906 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) S ( F `  y ) )  =  ( F `  (
x G y ) )  <->  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) ) ) )
2211, 21mpbird 232 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) S ( F `  y ) )  =  ( F `
 ( x G y ) ) )
23 issubgo 24981 . . . . 5  |-  ( S  e.  ( SubGrpOp `  H
)  <->  ( H  e. 
GrpOp  /\  S  e.  GrpOp  /\  S  C_  H )
)
2416, 23sylib 196 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( H  e. 
GrpOp  /\  S  e.  GrpOp  /\  S  C_  H )
)
2524simp2d 1009 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  S  e.  GrpOp )
261, 4elghom 25041 . . . . 5  |-  ( ( G  e.  GrpOp  /\  S  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  S )  <->  ( F : ran  G --> ran  S  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) S ( F `  y ) )  =  ( F `
 ( x G y ) ) ) ) )
2726biimprd 223 . . . 4  |-  ( ( G  e.  GrpOp  /\  S  e.  GrpOp )  ->  (
( F : ran  G --> ran  S  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x
) S ( F `
 y ) )  =  ( F `  ( x G y ) ) )  ->  F  e.  ( G GrpOpHom  S ) ) )
28273adant3 1016 . . 3  |-  ( ( G  e.  GrpOp  /\  S  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( F : ran  G --> ran  S  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) S ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  ( G GrpOpHom  S ) ) )
2925, 28syld3an2 1275 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( F : ran  G --> ran  S  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( F `  x ) S ( F `  y ) )  =  ( F `
 ( x G y ) ) )  ->  F  e.  ( G GrpOpHom  S ) ) )
307, 22, 29mp2and 679 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F  e.  ( G GrpOpHom  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    C_ wss 3476    X. cxp 4997   ran crn 5000    |` cres 5001   -->wf 5582   -onto->wfo 5584   ` cfv 5586  (class class class)co 6282   GrpOpcgr 24864   SubGrpOpcsubgo 24979   GrpOpHom cghom 25035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-grpo 24869  df-gid 24870  df-ginv 24871  df-subgo 24980  df-ghom 25036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator