Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomgrpilem2 Structured version   Unicode version

Theorem ghomgrpilem2 27317
Description: Lemma for ghomgrpi 27318. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypotheses
Ref Expression
ghomgrpilem1.1  |-  G  e. 
GrpOp
ghomgrpilem1.2  |-  H  e. 
GrpOp
ghomgrpilem1.3  |-  F  e.  ( G GrpOpHom  H )
ghomgrpilem1.4  |-  X  =  ran  G
ghomgrpilem1.5  |-  U  =  (GId `  G )
ghomgrpilem1.6  |-  N  =  ( inv `  G
)
ghomgrpilem1.7  |-  W  =  ran  H
ghomgrpilem1.8  |-  T  =  (GId `  H )
ghomgrpilem1.9  |-  M  =  ( inv `  H
)
ghomgrpilem1.10  |-  Z  =  ran  F
ghomgrpilem1.11  |-  S  =  ( H  |`  ( Z  X.  Z ) )
Assertion
Ref Expression
ghomgrpilem2  |-  S  e.  ( SubGrpOp `  H )

Proof of Theorem ghomgrpilem2
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomgrpilem1.2 . 2  |-  H  e. 
GrpOp
2 ghomgrpilem1.7 . 2  |-  W  =  ran  H
3 ghomgrpilem1.8 . 2  |-  T  =  (GId `  H )
4 ghomgrpilem1.9 . 2  |-  M  =  ( inv `  H
)
5 ghomgrpilem1.10 . . 3  |-  Z  =  ran  F
6 ghomgrpilem1.3 . . . . . 6  |-  F  e.  ( G GrpOpHom  H )
7 ghomgrpilem1.1 . . . . . . 7  |-  G  e. 
GrpOp
8 ghomgrpilem1.4 . . . . . . . 8  |-  X  =  ran  G
98, 2elghom 23862 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : X
--> W  /\  A. x  e.  X  A. y  e.  X  ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) ) )
107, 1, 9mp2an 672 . . . . . 6  |-  ( F  e.  ( G GrpOpHom  H )  <-> 
( F : X --> W  /\  A. x  e.  X  A. y  e.  X  ( ( F `
 x ) H ( F `  y
) )  =  ( F `  ( x G y ) ) ) )
116, 10mpbi 208 . . . . 5  |-  ( F : X --> W  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) )
1211simpli 458 . . . 4  |-  F : X
--> W
13 frn 5577 . . . 4  |-  ( F : X --> W  ->  ran  F  C_  W )
1412, 13ax-mp 5 . . 3  |-  ran  F  C_  W
155, 14eqsstri 3398 . 2  |-  Z  C_  W
16 ghomgrpilem1.11 . 2  |-  S  =  ( H  |`  ( Z  X.  Z ) )
175eleq2i 2507 . . . . . . 7  |-  ( x  e.  Z  <->  x  e.  ran  F )
18 ffn 5571 . . . . . . . . 9  |-  ( F : X --> W  ->  F  Fn  X )
1912, 18ax-mp 5 . . . . . . . 8  |-  F  Fn  X
20 fvelrnb 5751 . . . . . . . 8  |-  ( F  Fn  X  ->  (
x  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  x ) )
2119, 20ax-mp 5 . . . . . . 7  |-  ( x  e.  ran  F  <->  E. z  e.  X  ( F `  z )  =  x )
2217, 21bitri 249 . . . . . 6  |-  ( x  e.  Z  <->  E. z  e.  X  ( F `  z )  =  x )
2322biimpi 194 . . . . 5  |-  ( x  e.  Z  ->  E. z  e.  X  ( F `  z )  =  x )
245eleq2i 2507 . . . . . . 7  |-  ( y  e.  Z  <->  y  e.  ran  F )
25 fvelrnb 5751 . . . . . . . 8  |-  ( F  Fn  X  ->  (
y  e.  ran  F  <->  E. w  e.  X  ( F `  w )  =  y ) )
2619, 25ax-mp 5 . . . . . . 7  |-  ( y  e.  ran  F  <->  E. w  e.  X  ( F `  w )  =  y )
2724, 26bitri 249 . . . . . 6  |-  ( y  e.  Z  <->  E. w  e.  X  ( F `  w )  =  y )
2827biimpi 194 . . . . 5  |-  ( y  e.  Z  ->  E. w  e.  X  ( F `  w )  =  y )
2923, 28anim12i 566 . . . 4  |-  ( ( x  e.  Z  /\  y  e.  Z )  ->  ( E. z  e.  X  ( F `  z )  =  x  /\  E. w  e.  X  ( F `  w )  =  y ) )
30 reeanv 2900 . . . 4  |-  ( E. z  e.  X  E. w  e.  X  (
( F `  z
)  =  x  /\  ( F `  w )  =  y )  <->  ( E. z  e.  X  ( F `  z )  =  x  /\  E. w  e.  X  ( F `  w )  =  y ) )
3129, 30sylibr 212 . . 3  |-  ( ( x  e.  Z  /\  y  e.  Z )  ->  E. z  e.  X  E. w  e.  X  ( ( F `  z )  =  x  /\  ( F `  w )  =  y ) )
32 ghomgrpilem1.5 . . . . . . 7  |-  U  =  (GId `  G )
33 ghomgrpilem1.6 . . . . . . 7  |-  N  =  ( inv `  G
)
347, 1, 6, 8, 32, 33, 2, 3, 4, 5, 16ghomgrpilem1 27316 . . . . . 6  |-  ( ( z  e.  X  /\  w  e.  X )  ->  ( ( F `  z ) H ( F `  w ) )  =  ( F `
 ( z G w ) ) )
358grpocl 23699 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  z  e.  X  /\  w  e.  X )  ->  (
z G w )  e.  X )
367, 35mp3an1 1301 . . . . . . 7  |-  ( ( z  e.  X  /\  w  e.  X )  ->  ( z G w )  e.  X )
37 dffn3 5578 . . . . . . . . . 10  |-  ( F  Fn  X  <->  F : X
--> ran  F )
3819, 37mpbi 208 . . . . . . . . 9  |-  F : X
--> ran  F
39 feq3 5556 . . . . . . . . . 10  |-  ( Z  =  ran  F  -> 
( F : X --> Z 
<->  F : X --> ran  F
) )
405, 39ax-mp 5 . . . . . . . . 9  |-  ( F : X --> Z  <->  F : X
--> ran  F )
4138, 40mpbir 209 . . . . . . . 8  |-  F : X
--> Z
4241ffvelrni 5854 . . . . . . 7  |-  ( ( z G w )  e.  X  ->  ( F `  ( z G w ) )  e.  Z )
4336, 42syl 16 . . . . . 6  |-  ( ( z  e.  X  /\  w  e.  X )  ->  ( F `  (
z G w ) )  e.  Z )
4434, 43eqeltrd 2517 . . . . 5  |-  ( ( z  e.  X  /\  w  e.  X )  ->  ( ( F `  z ) H ( F `  w ) )  e.  Z )
45 oveq12 6112 . . . . . 6  |-  ( ( ( F `  z
)  =  x  /\  ( F `  w )  =  y )  -> 
( ( F `  z ) H ( F `  w ) )  =  ( x H y ) )
4645eleq1d 2509 . . . . 5  |-  ( ( ( F `  z
)  =  x  /\  ( F `  w )  =  y )  -> 
( ( ( F `
 z ) H ( F `  w
) )  e.  Z  <->  ( x H y )  e.  Z ) )
4744, 46syl5ibcom 220 . . . 4  |-  ( ( z  e.  X  /\  w  e.  X )  ->  ( ( ( F `
 z )  =  x  /\  ( F `
 w )  =  y )  ->  (
x H y )  e.  Z ) )
4847rexlimivv 2858 . . 3  |-  ( E. z  e.  X  E. w  e.  X  (
( F `  z
)  =  x  /\  ( F `  w )  =  y )  -> 
( x H y )  e.  Z )
4931, 48syl 16 . 2  |-  ( ( x  e.  Z  /\  y  e.  Z )  ->  ( x H y )  e.  Z )
508, 32grpoidcl 23716 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  U  e.  X )
517, 50ax-mp 5 . . . . . . 7  |-  U  e.  X
527, 1, 6, 8, 32, 33, 2, 3, 4, 5, 16ghomgrpilem1 27316 . . . . . . 7  |-  ( ( U  e.  X  /\  U  e.  X )  ->  ( ( F `  U ) H ( F `  U ) )  =  ( F `
 ( U G U ) ) )
5351, 51, 52mp2an 672 . . . . . 6  |-  ( ( F `  U ) H ( F `  U ) )  =  ( F `  ( U G U ) )
548, 32grpolid 23718 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  U  e.  X )  ->  ( U G U )  =  U )
557, 51, 54mp2an 672 . . . . . . 7  |-  ( U G U )  =  U
5655fveq2i 5706 . . . . . 6  |-  ( F `
 ( U G U ) )  =  ( F `  U
)
5753, 56eqtri 2463 . . . . 5  |-  ( ( F `  U ) H ( F `  U ) )  =  ( F `  U
)
58 ffvelrn 5853 . . . . . . 7  |-  ( ( F : X --> W  /\  U  e.  X )  ->  ( F `  U
)  e.  W )
5912, 51, 58mp2an 672 . . . . . 6  |-  ( F `
 U )  e.  W
60 eqid 2443 . . . . . . 7  |-  (GId `  H )  =  (GId
`  H )
612, 60grpoid 23722 . . . . . 6  |-  ( ( H  e.  GrpOp  /\  ( F `  U )  e.  W )  ->  (
( F `  U
)  =  (GId `  H )  <->  ( ( F `  U ) H ( F `  U ) )  =  ( F `  U
) ) )
621, 59, 61mp2an 672 . . . . 5  |-  ( ( F `  U )  =  (GId `  H
)  <->  ( ( F `
 U ) H ( F `  U
) )  =  ( F `  U ) )
6357, 62mpbir 209 . . . 4  |-  ( F `
 U )  =  (GId `  H )
643, 63eqtr4i 2466 . . 3  |-  T  =  ( F `  U
)
65 ffvelrn 5853 . . . 4  |-  ( ( F : X --> Z  /\  U  e.  X )  ->  ( F `  U
)  e.  Z )
6641, 51, 65mp2an 672 . . 3  |-  ( F `
 U )  e.  Z
6764, 66eqeltri 2513 . 2  |-  T  e.  Z
688, 33grpoinvcl 23725 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  z  e.  X )  ->  ( N `  z )  e.  X )
697, 68mpan 670 . . . . . . . . . 10  |-  ( z  e.  X  ->  ( N `  z )  e.  X )
707, 1, 6, 8, 32, 33, 2, 3, 4, 5, 16ghomgrpilem1 27316 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  ( N `  z )  e.  X )  -> 
( ( F `  z ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( z G ( N `  z
) ) ) )
7169, 70mpdan 668 . . . . . . . . 9  |-  ( z  e.  X  ->  (
( F `  z
) H ( F `
 ( N `  z ) ) )  =  ( F `  ( z G ( N `  z ) ) ) )
728, 32, 33grporinv 23728 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  z  e.  X )  ->  (
z G ( N `
 z ) )  =  U )
737, 72mpan 670 . . . . . . . . . 10  |-  ( z  e.  X  ->  (
z G ( N `
 z ) )  =  U )
7473fveq2d 5707 . . . . . . . . 9  |-  ( z  e.  X  ->  ( F `  ( z G ( N `  z ) ) )  =  ( F `  U ) )
7571, 74eqtrd 2475 . . . . . . . 8  |-  ( z  e.  X  ->  (
( F `  z
) H ( F `
 ( N `  z ) ) )  =  ( F `  U ) )
7675, 64syl6eqr 2493 . . . . . . 7  |-  ( z  e.  X  ->  (
( F `  z
) H ( F `
 ( N `  z ) ) )  =  T )
7712ffvelrni 5854 . . . . . . . 8  |-  ( z  e.  X  ->  ( F `  z )  e.  W )
7812ffvelrni 5854 . . . . . . . . 9  |-  ( ( N `  z )  e.  X  ->  ( F `  ( N `  z ) )  e.  W )
7969, 78syl 16 . . . . . . . 8  |-  ( z  e.  X  ->  ( F `  ( N `  z ) )  e.  W )
802, 3, 4grpoinvid1 23729 . . . . . . . . 9  |-  ( ( H  e.  GrpOp  /\  ( F `  z )  e.  W  /\  ( F `  ( N `  z ) )  e.  W )  ->  (
( M `  ( F `  z )
)  =  ( F `
 ( N `  z ) )  <->  ( ( F `  z ) H ( F `  ( N `  z ) ) )  =  T ) )
811, 80mp3an1 1301 . . . . . . . 8  |-  ( ( ( F `  z
)  e.  W  /\  ( F `  ( N `
 z ) )  e.  W )  -> 
( ( M `  ( F `  z ) )  =  ( F `
 ( N `  z ) )  <->  ( ( F `  z ) H ( F `  ( N `  z ) ) )  =  T ) )
8277, 79, 81syl2anc 661 . . . . . . 7  |-  ( z  e.  X  ->  (
( M `  ( F `  z )
)  =  ( F `
 ( N `  z ) )  <->  ( ( F `  z ) H ( F `  ( N `  z ) ) )  =  T ) )
8376, 82mpbird 232 . . . . . 6  |-  ( z  e.  X  ->  ( M `  ( F `  z ) )  =  ( F `  ( N `  z )
) )
8441ffvelrni 5854 . . . . . . 7  |-  ( ( N `  z )  e.  X  ->  ( F `  ( N `  z ) )  e.  Z )
8569, 84syl 16 . . . . . 6  |-  ( z  e.  X  ->  ( F `  ( N `  z ) )  e.  Z )
8683, 85eqeltrd 2517 . . . . 5  |-  ( z  e.  X  ->  ( M `  ( F `  z ) )  e.  Z )
87 fveq2 5703 . . . . . 6  |-  ( ( F `  z )  =  x  ->  ( M `  ( F `  z ) )  =  ( M `  x
) )
8887eleq1d 2509 . . . . 5  |-  ( ( F `  z )  =  x  ->  (
( M `  ( F `  z )
)  e.  Z  <->  ( M `  x )  e.  Z
) )
8986, 88syl5ibcom 220 . . . 4  |-  ( z  e.  X  ->  (
( F `  z
)  =  x  -> 
( M `  x
)  e.  Z ) )
9089rexlimiv 2847 . . 3  |-  ( E. z  e.  X  ( F `  z )  =  x  ->  ( M `  x )  e.  Z )
9122, 90sylbi 195 . 2  |-  ( x  e.  Z  ->  ( M `  x )  e.  Z )
921, 2, 3, 4, 15, 16, 49, 67, 91issubgoi 23809 1  |-  S  e.  ( SubGrpOp `  H )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728    C_ wss 3340    X. cxp 4850   ran crn 4853    |` cres 4854    Fn wfn 5425   -->wf 5426   ` cfv 5430  (class class class)co 6103   GrpOpcgr 23685  GIdcgi 23686   invcgn 23687   SubGrpOpcsubgo 23800   GrpOpHom cghom 23856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-grpo 23690  df-gid 23691  df-ginv 23692  df-subgo 23801  df-ghom 23857
This theorem is referenced by:  ghomgrpi  27318
  Copyright terms: Public domain W3C validator