Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomgrpilem1 Unicode version

Theorem ghomgrpilem1 23163
Description: Lemma for ghomgrpi 23165. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypotheses
Ref Expression
ghomgrpilem1.1  |-  G  e. 
GrpOp
ghomgrpilem1.2  |-  H  e. 
GrpOp
ghomgrpilem1.3  |-  F  e.  ( G GrpOpHom  H )
ghomgrpilem1.4  |-  X  =  ran  G
ghomgrpilem1.5  |-  U  =  (GId `  G )
ghomgrpilem1.6  |-  N  =  ( inv `  G
)
ghomgrpilem1.7  |-  W  =  ran  H
ghomgrpilem1.8  |-  T  =  (GId `  H )
ghomgrpilem1.9  |-  M  =  ( inv `  H
)
ghomgrpilem1.10  |-  Z  =  ran  F
ghomgrpilem1.11  |-  S  =  ( H  |`  ( Z  X.  Z ) )
Assertion
Ref Expression
ghomgrpilem1  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( F `  A ) H ( F `  B ) )  =  ( F `
 ( A G B ) ) )

Proof of Theorem ghomgrpilem1
StepHypRef Expression
1 fveq2 5377 . . . . . 6  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
21oveq1d 5725 . . . . 5  |-  ( x  =  A  ->  (
( F `  x
) H ( F `
 y ) )  =  ( ( F `
 A ) H ( F `  y
) ) )
3 oveq1 5717 . . . . . 6  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
43fveq2d 5381 . . . . 5  |-  ( x  =  A  ->  ( F `  ( x G y ) )  =  ( F `  ( A G y ) ) )
52, 4eqeq12d 2267 . . . 4  |-  ( x  =  A  ->  (
( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) )  <->  ( ( F `  A ) H ( F `  y ) )  =  ( F `  ( A G y ) ) ) )
65ralbidv 2527 . . 3  |-  ( x  =  A  ->  ( A. y  e.  X  ( ( F `  x ) H ( F `  y ) )  =  ( F `
 ( x G y ) )  <->  A. y  e.  X  ( ( F `  A ) H ( F `  y ) )  =  ( F `  ( A G y ) ) ) )
7 ghomgrpilem1.3 . . . . 5  |-  F  e.  ( G GrpOpHom  H )
8 ghomgrpilem1.1 . . . . . 6  |-  G  e. 
GrpOp
9 ghomgrpilem1.2 . . . . . 6  |-  H  e. 
GrpOp
10 ghomgrpilem1.4 . . . . . . 7  |-  X  =  ran  G
11 ghomgrpilem1.7 . . . . . . 7  |-  W  =  ran  H
1210, 11elghom 20860 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : X
--> W  /\  A. x  e.  X  A. y  e.  X  ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) ) ) ) )
138, 9, 12mp2an 656 . . . . 5  |-  ( F  e.  ( G GrpOpHom  H )  <-> 
( F : X --> W  /\  A. x  e.  X  A. y  e.  X  ( ( F `
 x ) H ( F `  y
) )  =  ( F `  ( x G y ) ) ) )
147, 13mpbi 201 . . . 4  |-  ( F : X --> W  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) )
1514simpri 450 . . 3  |-  A. x  e.  X  A. y  e.  X  ( ( F `  x ) H ( F `  y ) )  =  ( F `  (
x G y ) )
166, 15vtoclri 2796 . 2  |-  ( A  e.  X  ->  A. y  e.  X  ( ( F `  A ) H ( F `  y ) )  =  ( F `  ( A G y ) ) )
17 fveq2 5377 . . . . 5  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
1817oveq2d 5726 . . . 4  |-  ( y  =  B  ->  (
( F `  A
) H ( F `
 y ) )  =  ( ( F `
 A ) H ( F `  B
) ) )
19 oveq2 5718 . . . . 5  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
2019fveq2d 5381 . . . 4  |-  ( y  =  B  ->  ( F `  ( A G y ) )  =  ( F `  ( A G B ) ) )
2118, 20eqeq12d 2267 . . 3  |-  ( y  =  B  ->  (
( ( F `  A ) H ( F `  y ) )  =  ( F `
 ( A G y ) )  <->  ( ( F `  A ) H ( F `  B ) )  =  ( F `  ( A G B ) ) ) )
2221rcla4v 2817 . 2  |-  ( B  e.  X  ->  ( A. y  e.  X  ( ( F `  A ) H ( F `  y ) )  =  ( F `
 ( A G y ) )  -> 
( ( F `  A ) H ( F `  B ) )  =  ( F `
 ( A G B ) ) ) )
2316, 22mpan9 457 1  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( F `  A ) H ( F `  B ) )  =  ( F `
 ( A G B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509    X. cxp 4578   ran crn 4581    |` cres 4582   -->wf 4588   ` cfv 4592  (class class class)co 5710   GrpOpcgr 20683  GIdcgi 20684   invcgn 20685   GrpOpHom cghom 20854
This theorem is referenced by:  ghomgrpilem2  23164
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-ghom 20855
  Copyright terms: Public domain W3C validator