Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomfo Unicode version

Theorem ghomfo 25055
Description: A group homomorphism maps onto its image. (Contributed by Paul Chapman, 3-Mar-2008.)
Hypotheses
Ref Expression
ghomfo.1  |-  X  =  ran  G
ghomfo.2  |-  Y  =  ran  F
ghomfo.3  |-  S  =  ( H  |`  ( Y  X.  Y ) )
ghomfo.4  |-  Z  =  ran  S
Assertion
Ref Expression
ghomfo  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X -onto-> Z )

Proof of Theorem ghomfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomfo.1 . . . . . 6  |-  X  =  ran  G
2 eqid 2404 . . . . . 6  |-  ran  H  =  ran  H
31, 2elghom 21904 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G GrpOpHom  H )  <->  ( F : X
--> ran  H  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) ) ) )
43biimp3a 1283 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
--> ran  H  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
) H ( F `
 y ) )  =  ( F `  ( x G y ) ) ) )
54simpld 446 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> ran  H )
6 ffn 5550 . . 3  |-  ( F : X --> ran  H  ->  F  Fn  X )
75, 6syl 16 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F  Fn  X
)
8 ghomfo.3 . . . . . 6  |-  S  =  ( H  |`  ( Y  X.  Y ) )
98dmeqi 5030 . . . . 5  |-  dom  S  =  dom  ( H  |`  ( Y  X.  Y
) )
10 ghomfo.2 . . . . . . . . 9  |-  Y  =  ran  F
1110, 8ghomgrp 25054 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  S  e.  (
SubGrpOp `  H ) )
12 issubgo 21844 . . . . . . . 8  |-  ( S  e.  ( SubGrpOp `  H
)  <->  ( H  e. 
GrpOp  /\  S  e.  GrpOp  /\  S  C_  H )
)
1311, 12sylib 189 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( H  e. 
GrpOp  /\  S  e.  GrpOp  /\  S  C_  H )
)
1413simp2d 970 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  S  e.  GrpOp )
15 ghomfo.4 . . . . . . . 8  |-  Z  =  ran  S
1615grpofo 21740 . . . . . . 7  |-  ( S  e.  GrpOp  ->  S :
( Z  X.  Z
) -onto-> Z )
17 fof 5612 . . . . . . 7  |-  ( S : ( Z  X.  Z ) -onto-> Z  ->  S : ( Z  X.  Z ) --> Z )
18 fdm 5554 . . . . . . 7  |-  ( S : ( Z  X.  Z ) --> Z  ->  dom  S  =  ( Z  X.  Z ) )
1916, 17, 183syl 19 . . . . . 6  |-  ( S  e.  GrpOp  ->  dom  S  =  ( Z  X.  Z
) )
2014, 19syl 16 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  dom  S  =  ( Z  X.  Z
) )
21 frn 5556 . . . . . . . . 9  |-  ( F : X --> ran  H  ->  ran  F  C_  ran  H )
225, 21syl 16 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ran  F  C_  ran  H )
2310, 22syl5eqss 3352 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  Y  C_  ran  H )
24 xpss12 4940 . . . . . . 7  |-  ( ( Y  C_  ran  H  /\  Y  C_  ran  H )  ->  ( Y  X.  Y )  C_  ( ran  H  X.  ran  H
) )
2523, 23, 24syl2anc 643 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( Y  X.  Y )  C_  ( ran  H  X.  ran  H
) )
26 ssdmres 5127 . . . . . . . 8  |-  ( ( Y  X.  Y ) 
C_  dom  H  <->  dom  ( H  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
272grpofo 21740 . . . . . . . . . 10  |-  ( H  e.  GrpOp  ->  H :
( ran  H  X.  ran  H ) -onto-> ran  H
)
28 fof 5612 . . . . . . . . . 10  |-  ( H : ( ran  H  X.  ran  H ) -onto-> ran 
H  ->  H :
( ran  H  X.  ran  H ) --> ran  H
)
29 fdm 5554 . . . . . . . . . 10  |-  ( H : ( ran  H  X.  ran  H ) --> ran 
H  ->  dom  H  =  ( ran  H  X.  ran  H ) )
3027, 28, 293syl 19 . . . . . . . . 9  |-  ( H  e.  GrpOp  ->  dom  H  =  ( ran  H  X.  ran  H ) )
3130sseq2d 3336 . . . . . . . 8  |-  ( H  e.  GrpOp  ->  ( ( Y  X.  Y )  C_  dom  H  <->  ( Y  X.  Y )  C_  ( ran  H  X.  ran  H
) ) )
3226, 31syl5rbbr 252 . . . . . . 7  |-  ( H  e.  GrpOp  ->  ( ( Y  X.  Y )  C_  ( ran  H  X.  ran  H )  <->  dom  ( H  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) ) )
33323ad2ant2 979 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( Y  X.  Y )  C_  ( ran  H  X.  ran  H )  <->  dom  ( H  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) ) )
3425, 33mpbid 202 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  dom  ( H  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
359, 20, 343eqtr3a 2460 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( Z  X.  Z )  =  ( Y  X.  Y ) )
36 xpid11 5050 . . . 4  |-  ( ( Z  X.  Z )  =  ( Y  X.  Y )  <->  Z  =  Y )
3735, 36sylib 189 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  Z  =  Y )
3837, 10syl6req 2453 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ran  F  =  Z )
39 df-fo 5419 . 2  |-  ( F : X -onto-> Z  <->  ( F  Fn  X  /\  ran  F  =  Z ) )
407, 38, 39sylanbrc 646 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X -onto-> Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666    C_ wss 3280    X. cxp 4835   dom cdm 4837   ran crn 4838    |` cres 4839    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040   GrpOpcgr 21727   SubGrpOpcsubgo 21842   GrpOpHom cghom 21898
This theorem is referenced by:  ghomcl  25056  ghomgsg  25057  ghomf1olem  25058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-grpo 21732  df-gid 21733  df-ginv 21734  df-subgo 21843  df-ghom 21899
  Copyright terms: Public domain W3C validator