Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomf1olem Structured version   Unicode version

Theorem ghomf1olem 30314
Description: Lemma for ghomf1o 30315. (Contributed by Paul Chapman, 3-Mar-2008.)
Hypotheses
Ref Expression
ghomf1olem.1  |-  X  =  ran  G
ghomf1olem.2  |-  Y  =  ran  F
ghomf1olem.3  |-  S  =  ( H  |`  ( Y  X.  Y ) )
ghomf1olem.4  |-  Z  =  ran  S
ghomf1olem.5  |-  U  =  (GId `  G )
ghomf1olem.6  |-  T  =  (GId `  H )
ghomf1olem.7  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
ghomf1olem  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
-1-1-onto-> Z 
<-> 
A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) ) )
Distinct variable groups:    x, F    x, G    x, H    x, T    x, U    x, X    x, Z    x, N
Allowed substitution hints:    S( x)    Y( x)

Proof of Theorem ghomf1olem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 5828 . . . . . . 7  |-  ( F : X -1-1-onto-> Z  ->  F : X -1-1-> Z )
2 dff13 6172 . . . . . . 7  |-  ( F : X -1-1-> Z  <->  ( F : X --> Z  /\  A. y  e.  X  A. z  e.  X  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
31, 2sylib 200 . . . . . 6  |-  ( F : X -1-1-onto-> Z  ->  ( F : X --> Z  /\  A. y  e.  X  A. z  e.  X  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
43simprd 465 . . . . 5  |-  ( F : X -1-1-onto-> Z  ->  A. y  e.  X  A. z  e.  X  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
5 ghomf1olem.1 . . . . . . . . 9  |-  X  =  ran  G
6 ghomf1olem.5 . . . . . . . . 9  |-  U  =  (GId `  G )
75, 6grpoidcl 25937 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  U  e.  X )
8 fveq2 5879 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
98eqeq1d 2425 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( F `  y
)  =  ( F `
 z )  <->  ( F `  x )  =  ( F `  z ) ) )
10 equequ1 1849 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  =  z  <->  x  =  z ) )
119, 10imbi12d 322 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( ( F `  y )  =  ( F `  z )  ->  y  =  z )  <->  ( ( F `
 x )  =  ( F `  z
)  ->  x  =  z ) ) )
12 fveq2 5879 . . . . . . . . . . . 12  |-  ( z  =  U  ->  ( F `  z )  =  ( F `  U ) )
1312eqeq2d 2437 . . . . . . . . . . 11  |-  ( z  =  U  ->  (
( F `  x
)  =  ( F `
 z )  <->  ( F `  x )  =  ( F `  U ) ) )
14 eqeq2 2438 . . . . . . . . . . 11  |-  ( z  =  U  ->  (
x  =  z  <->  x  =  U ) )
1513, 14imbi12d 322 . . . . . . . . . 10  |-  ( z  =  U  ->  (
( ( F `  x )  =  ( F `  z )  ->  x  =  z )  <->  ( ( F `
 x )  =  ( F `  U
)  ->  x  =  U ) ) )
1611, 15rspc2v 3192 . . . . . . . . 9  |-  ( ( x  e.  X  /\  U  e.  X )  ->  ( A. y  e.  X  A. z  e.  X  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z )  ->  (
( F `  x
)  =  ( F `
 U )  ->  x  =  U )
) )
1716expcom 437 . . . . . . . 8  |-  ( U  e.  X  ->  (
x  e.  X  -> 
( A. y  e.  X  A. z  e.  X  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z )  ->  (
( F `  x
)  =  ( F `
 U )  ->  x  =  U )
) ) )
187, 17syl 17 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( x  e.  X  ->  ( A. y  e.  X  A. z  e.  X  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z )  ->  ( ( F `
 x )  =  ( F `  U
)  ->  x  =  U ) ) ) )
1918com23 82 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( A. y  e.  X  A. z  e.  X  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z )  ->  ( x  e.  X  ->  ( ( F `  x )  =  ( F `  U )  ->  x  =  U ) ) ) )
20193ad2ant1 1027 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( A. y  e.  X  A. z  e.  X  ( ( F `  y )  =  ( F `  z )  ->  y  =  z )  -> 
( x  e.  X  ->  ( ( F `  x )  =  ( F `  U )  ->  x  =  U ) ) ) )
214, 20syl5 34 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
-1-1-onto-> Z  ->  ( x  e.  X  ->  ( ( F `  x )  =  ( F `  U )  ->  x  =  U ) ) ) )
22 ghomf1olem.6 . . . . . . . 8  |-  T  =  (GId `  H )
236, 22ghomidOLD 26085 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F `  U )  =  T )
2423eqeq2d 2437 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( F `
 x )  =  ( F `  U
)  <->  ( F `  x )  =  T ) )
2524imbi1d 319 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( ( F `  x )  =  ( F `  U )  ->  x  =  U )  <->  ( ( F `  x )  =  T  ->  x  =  U ) ) )
2625imbi2d 318 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( x  e.  X  ->  (
( F `  x
)  =  ( F `
 U )  ->  x  =  U )
)  <->  ( x  e.  X  ->  ( ( F `  x )  =  T  ->  x  =  U ) ) ) )
2721, 26sylibd 218 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
-1-1-onto-> Z  ->  ( x  e.  X  ->  ( ( F `  x )  =  T  ->  x  =  U ) ) ) )
2827ralrimdv 2842 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
-1-1-onto-> Z  ->  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) ) )
29 ghomf1olem.2 . . . . . . . 8  |-  Y  =  ran  F
30 ghomf1olem.3 . . . . . . . 8  |-  S  =  ( H  |`  ( Y  X.  Y ) )
31 ghomf1olem.4 . . . . . . . 8  |-  Z  =  ran  S
325, 29, 30, 31ghomfo 30311 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X -onto-> Z )
3332adantr 467 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  ->  F : X -onto-> Z )
34 fof 5808 . . . . . 6  |-  ( F : X -onto-> Z  ->  F : X --> Z )
3533, 34syl 17 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  ->  F : X --> Z )
36 ghomf1olem.7 . . . . . . . . . . . . . . 15  |-  N  =  ( inv `  G
)
375, 36grpoinvcl 25946 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  z  e.  X )  ->  ( N `  z )  e.  X )
38373adant2 1025 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  ( N `  z )  e.  X )
395grpocl 25920 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  ( N `  z )  e.  X )  ->  (
y G ( N `
 z ) )  e.  X )
4038, 39syld3an3 1310 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  (
y G ( N `
 z ) )  e.  X )
41403expib 1209 . . . . . . . . . . 11  |-  ( G  e.  GrpOp  ->  ( (
y  e.  X  /\  z  e.  X )  ->  ( y G ( N `  z ) )  e.  X ) )
42413ad2ant1 1027 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( y  e.  X  /\  z  e.  X )  ->  (
y G ( N `
 z ) )  e.  X ) )
43 fveq2 5879 . . . . . . . . . . . . 13  |-  ( x  =  ( y G ( N `  z
) )  ->  ( F `  x )  =  ( F `  ( y G ( N `  z ) ) ) )
4443eqeq1d 2425 . . . . . . . . . . . 12  |-  ( x  =  ( y G ( N `  z
) )  ->  (
( F `  x
)  =  T  <->  ( F `  ( y G ( N `  z ) ) )  =  T ) )
45 eqeq1 2427 . . . . . . . . . . . 12  |-  ( x  =  ( y G ( N `  z
) )  ->  (
x  =  U  <->  ( y G ( N `  z ) )  =  U ) )
4644, 45imbi12d 322 . . . . . . . . . . 11  |-  ( x  =  ( y G ( N `  z
) )  ->  (
( ( F `  x )  =  T  ->  x  =  U )  <->  ( ( F `
 ( y G ( N `  z
) ) )  =  T  ->  ( y G ( N `  z ) )  =  U ) ) )
4746rspcv 3179 . . . . . . . . . 10  |-  ( ( y G ( N `
 z ) )  e.  X  ->  ( A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U )  ->  ( ( F `  ( y G ( N `  z ) ) )  =  T  ->  (
y G ( N `
 z ) )  =  U ) ) )
4842, 47syl6 35 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( y  e.  X  /\  z  e.  X )  ->  ( A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U )  ->  ( ( F `  ( y G ( N `  z ) ) )  =  T  ->  (
y G ( N `
 z ) )  =  U ) ) ) )
4948imp 431 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A. x  e.  X  ( ( F `
 x )  =  T  ->  x  =  U )  ->  (
( F `  (
y G ( N `
 z ) ) )  =  T  -> 
( y G ( N `  z ) )  =  U ) ) )
50 oveq1 6310 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  ( F `  z )  ->  (
( F `  y
) H ( F `
 ( N `  z ) ) )  =  ( ( F `
 z ) H ( F `  ( N `  z )
) ) )
51503ad2ant3 1029 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( ( F `  y ) H ( F `  ( N `
 z ) ) )  =  ( ( F `  z ) H ( F `  ( N `  z ) ) ) )
52 simprl 763 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
53373ad2antl1 1168 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  z  e.  X )  ->  ( N `  z )  e.  X )
5453adantrl 721 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( N `  z
)  e.  X )
5552, 54jca 535 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  e.  X  /\  ( N `  z
)  e.  X ) )
565ghomlinOLD 26084 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  ( N `  z )  e.  X ) )  -> 
( ( F `  y ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( y G ( N `  z
) ) ) )
5755, 56syldan 473 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( y G ( N `  z
) ) ) )
58573adant3 1026 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( ( F `  y ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( y G ( N `  z
) ) ) )
59 simprr 765 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
6059, 54jca 535 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z  e.  X  /\  ( N `  z
)  e.  X ) )
615ghomlinOLD 26084 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( z  e.  X  /\  ( N `  z )  e.  X ) )  -> 
( ( F `  z ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( z G ( N `  z
) ) ) )
6260, 61syldan 473 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  z ) H ( F `  ( N `
 z ) ) )  =  ( F `
 ( z G ( N `  z
) ) ) )
635, 6, 36grporinv 25949 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  GrpOp  /\  z  e.  X )  ->  (
z G ( N `
 z ) )  =  U )
64633ad2antl1 1168 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  z  e.  X )  ->  (
z G ( N `
 z ) )  =  U )
6564adantrl 721 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z G ( N `  z ) )  =  U )
6665fveq2d 5883 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
z G ( N `
 z ) ) )  =  ( F `
 U ) )
6723adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  U
)  =  T )
6862, 66, 673eqtrd 2468 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  z ) H ( F `  ( N `
 z ) ) )  =  T )
69683adant3 1026 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( ( F `  z ) H ( F `  ( N `
 z ) ) )  =  T )
7051, 58, 693eqtr3d 2472 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( F `  (
y G ( N `
 z ) ) )  =  T )
71703expia 1208 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  ( F `  ( y G ( N `  z ) ) )  =  T ) )
72 equcom 1845 . . . . . . . . . . . . 13  |-  ( z  =  y  <->  y  =  z )
735, 36grpo2inv 25959 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  GrpOp  /\  z  e.  X )  ->  ( N `  ( N `  z ) )  =  z )
74733adant2 1025 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  ( N `  ( N `  z ) )  =  z )
7574eqeq1d 2425 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  (
( N `  ( N `  z )
)  =  y  <->  z  =  y ) )
765, 6, 36grpoinvid2 25951 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  GrpOp  /\  ( N `  z )  e.  X  /\  y  e.  X )  ->  (
( N `  ( N `  z )
)  =  y  <->  ( y G ( N `  z ) )  =  U ) )
77763com23 1212 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  ( N `  z )  e.  X )  ->  (
( N `  ( N `  z )
)  =  y  <->  ( y G ( N `  z ) )  =  U ) )
7838, 77syld3an3 1310 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  (
( N `  ( N `  z )
)  =  y  <->  ( y G ( N `  z ) )  =  U ) )
7975, 78bitr3d 259 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  (
z  =  y  <->  ( y G ( N `  z ) )  =  U ) )
8072, 79syl5bbr 263 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  y  e.  X  /\  z  e.  X )  ->  (
y  =  z  <->  ( y G ( N `  z ) )  =  U ) )
81803expb 1207 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y  =  z  <->  ( y G ( N `  z
) )  =  U ) )
82813ad2antl1 1168 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  =  z  <-> 
( y G ( N `  z ) )  =  U ) )
8382biimprd 227 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( y G ( N `  z
) )  =  U  ->  y  =  z ) )
8471, 83imim12d 78 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( F `
 ( y G ( N `  z
) ) )  =  T  ->  ( y G ( N `  z ) )  =  U )  ->  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
8549, 84syld 46 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A. x  e.  X  ( ( F `
 x )  =  T  ->  x  =  U )  ->  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
8685impancom 442 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  -> 
( ( y  e.  X  /\  z  e.  X )  ->  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
8786ralrimivv 2846 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  ->  A. y  e.  X  A. z  e.  X  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
8835, 87, 2sylanbrc 669 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  ->  F : X -1-1-> Z )
89 df-f1o 5606 . . . 4  |-  ( F : X -1-1-onto-> Z  <->  ( F : X -1-1-> Z  /\  F : X -onto-> Z ) )
9088, 33, 89sylanbrc 669 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) )  ->  F : X -1-1-onto-> Z )
9190ex 436 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U )  ->  F : X -1-1-onto-> Z ) )
9228, 91impbid 194 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X
-1-1-onto-> Z 
<-> 
A. x  e.  X  ( ( F `  x )  =  T  ->  x  =  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   A.wral 2776    X. cxp 4849   ran crn 4852    |` cres 4853   -->wf 5595   -1-1->wf1 5596   -onto->wfo 5597   -1-1-onto->wf1o 5598   ` cfv 5599  (class class class)co 6303   GrpOpcgr 25906  GIdcgi 25907   invcgn 25908   GrpOpHom cghomOLD 26077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-grpo 25911  df-gid 25912  df-ginv 25913  df-subgo 26022  df-ghomOLD 26078
This theorem is referenced by:  ghomf1o  30315
  Copyright terms: Public domain W3C validator