Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomco Structured version   Unicode version

Theorem ghomco 28891
Description: The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
ghomco  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp )  /\  ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
) )  ->  ( T  o.  S )  e.  ( G GrpOpHom  K )
)

Proof of Theorem ghomco
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fco 5671 . . . . . . 7  |-  ( ( T : ran  H --> ran  K  /\  S : ran  G --> ran  H )  ->  ( T  o.  S
) : ran  G --> ran  K )
21ancoms 453 . . . . . 6  |-  ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  ->  ( T  o.  S
) : ran  G --> ran  K )
32ad2ant2r 746 . . . . 5  |-  ( ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( T  o.  S
) : ran  G --> ran  K )
43a1i 11 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( T  o.  S
) : ran  G --> ran  K ) )
5 ffvelrn 5945 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S : ran  G --> ran  H  /\  x  e. 
ran  G )  -> 
( S `  x
)  e.  ran  H
)
6 ffvelrn 5945 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S : ran  G --> ran  H  /\  y  e. 
ran  G )  -> 
( S `  y
)  e.  ran  H
)
75, 6anim12da 28747 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S : ran  G --> ran  H  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( S `  x )  e.  ran  H  /\  ( S `  y )  e.  ran  H ) )
8 fveq2 5794 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  ( S `  x )  ->  ( T `  u )  =  ( T `  ( S `  x ) ) )
98oveq1d 6210 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  ( S `  x )  ->  (
( T `  u
) K ( T `
 v ) )  =  ( ( T `
 ( S `  x ) ) K ( T `  v
) ) )
10 oveq1 6202 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  ( S `  x )  ->  (
u H v )  =  ( ( S `
 x ) H v ) )
1110fveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  ( S `  x )  ->  ( T `  ( u H v ) )  =  ( T `  ( ( S `  x ) H v ) ) )
129, 11eqeq12d 2474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  ( S `  x )  ->  (
( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) )  <->  ( ( T `  ( S `  x ) ) K ( T `  v
) )  =  ( T `  ( ( S `  x ) H v ) ) ) )
13 fveq2 5794 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( S `  y )  ->  ( T `  v )  =  ( T `  ( S `  y ) ) )
1413oveq2d 6211 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  ( S `  y )  ->  (
( T `  ( S `  x )
) K ( T `
 v ) )  =  ( ( T `
 ( S `  x ) ) K ( T `  ( S `  y )
) ) )
15 oveq2 6203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( S `  y )  ->  (
( S `  x
) H v )  =  ( ( S `
 x ) H ( S `  y
) ) )
1615fveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  ( S `  y )  ->  ( T `  ( ( S `  x ) H v ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
1714, 16eqeq12d 2474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( S `  y )  ->  (
( ( T `  ( S `  x ) ) K ( T `
 v ) )  =  ( T `  ( ( S `  x ) H v ) )  <->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) ) )
1812, 17rspc2va 3181 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S `  x )  e.  ran  H  /\  ( S `  y )  e.  ran  H )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
197, 18sylan 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S : ran  G --> ran  H  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  -> 
( ( T `  ( S `  x ) ) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2019an32s 802 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S : ran  G --> ran  H  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2120adantllr 718 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2221adantllr 718 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
23 fveq2 5794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) )  ->  ( T `  ( ( S `  x ) H ( S `  y ) ) )  =  ( T `  ( S `  ( x G y ) ) ) )
2422, 23sylan9eq 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) )  /\  ( x  e. 
ran  G  /\  y  e.  ran  G ) )  /\  ( ( S `
 x ) H ( S `  y
) )  =  ( S `  ( x G y ) ) )  ->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( S `
 ( x G y ) ) ) )
2524anasss 647 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( S `
 ( x G y ) ) ) )
26 fvco3 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  x  e. 
ran  G )  -> 
( ( T  o.  S ) `  x
)  =  ( T `
 ( S `  x ) ) )
2726ad2ant2r 746 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  x )  =  ( T `  ( S `
 x ) ) )
28 fvco3 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  y  e. 
ran  G )  -> 
( ( T  o.  S ) `  y
)  =  ( T `
 ( S `  y ) ) )
2928ad2ant2rl 748 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  y )  =  ( T `  ( S `
 y ) ) )
3027, 29oveq12d 6213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) ) )
3130adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) ) )
3231ad2ant2r 746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( (
( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T `  ( S `  x ) ) K ( T `
 ( S `  y ) ) ) )
33 eqid 2452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ran  G  =  ran  G
3433grpocl 23834 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e.  GrpOp  /\  x  e.  ran  G  /\  y  e.  ran  G )  -> 
( x G y )  e.  ran  G
)
35343expb 1189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  GrpOp  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
x G y )  e.  ran  G )
36 fvco3 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  ( x G y )  e. 
ran  G )  -> 
( ( T  o.  S ) `  (
x G y ) )  =  ( T `
 ( S `  ( x G y ) ) ) )
3736adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x G y )  e. 
ran  G )  -> 
( ( T  o.  S ) `  (
x G y ) )  =  ( T `
 ( S `  ( x G y ) ) ) )
3835, 37sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( G  e.  GrpOp  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
3938anassrs 648 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
4039ad2ant2r 746 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
4125, 32, 403eqtr4d 2503 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( (
( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) )
4241expr 615 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  -> 
( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4342anassrs 648 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) )  /\  x  e.  ran  G )  /\  y  e. 
ran  G )  -> 
( ( ( S `
 x ) H ( S `  y
) )  =  ( S `  ( x G y ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T  o.  S
) `  ( x G y ) ) ) )
4443ralimdva 2829 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  x  e.  ran  G )  ->  ( A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) )  ->  A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) )
4544ralimdva 2829 . . . . . . . . . . . 12  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4645an32s 802 . . . . . . . . . . 11  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  /\  G  e.  GrpOp )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4746ex 434 . . . . . . . . . 10  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( G  e.  GrpOp  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
4847com23 78 . . . . . . . . 9  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  -> 
( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
4948anasss 647 . . . . . . . 8  |-  ( ( S : ran  G --> ran  H  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) )  ->  ( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) ) )
5049imp 429 . . . . . . 7  |-  ( ( ( S : ran  G --> ran  H  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) )  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) ) )  ->  ( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) )
5150an32s 802 . . . . . 6  |-  ( ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
5251com12 31 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
53523ad2ant1 1009 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
544, 53jcad 533 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( ( T  o.  S ) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x
) K ( ( T  o.  S ) `
 y ) )  =  ( ( T  o.  S ) `  ( x G y ) ) ) ) )
55 eqid 2452 . . . . . 6  |-  ran  H  =  ran  H
5633, 55elghom 23997 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( S  e.  ( G GrpOpHom  H )  <->  ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) ) )
57563adant3 1008 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( S  e.  ( G GrpOpHom  H )  <->  ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) ) ) ) )
58 eqid 2452 . . . . . 6  |-  ran  K  =  ran  K
5955, 58elghom 23997 . . . . 5  |-  ( ( H  e.  GrpOp  /\  K  e.  GrpOp )  ->  ( T  e.  ( H GrpOpHom  K )  <->  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) ) )
60593adant1 1006 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( T  e.  ( H GrpOpHom  K )  <->  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) ) )
6157, 60anbi12d 710 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
)  <->  ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) ) ) )
6233, 58elghom 23997 . . . 4  |-  ( ( G  e.  GrpOp  /\  K  e.  GrpOp )  ->  (
( T  o.  S
)  e.  ( G GrpOpHom  K )  <->  ( ( T  o.  S ) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
63623adant2 1007 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( T  o.  S )  e.  ( G GrpOpHom  K )  <->  ( ( T  o.  S
) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) ) )
6454, 61, 633imtr4d 268 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
)  ->  ( T  o.  S )  e.  ( G GrpOpHom  K ) ) )
6564imp 429 1  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp )  /\  ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
) )  ->  ( T  o.  S )  e.  ( G GrpOpHom  K )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2796   ran crn 4944    o. ccom 4947   -->wf 5517   ` cfv 5521  (class class class)co 6195   GrpOpcgr 23820   GrpOpHom cghom 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-grpo 23825  df-ghom 23992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator