MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmplusg Structured version   Unicode version

Theorem ghmplusg 17477
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
ghmplusg.p  |-  .+  =  ( +g  `  N )
Assertion
Ref Expression
ghmplusg  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M  GrpHom  N ) )

Proof of Theorem ghmplusg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2423 . 2  |-  ( Base `  N )  =  (
Base `  N )
3 eqid 2423 . 2  |-  ( +g  `  M )  =  ( +g  `  M )
4 ghmplusg.p . 2  |-  .+  =  ( +g  `  N )
5 ghmgrp1 16878 . . 3  |-  ( G  e.  ( M  GrpHom  N )  ->  M  e.  Grp )
653ad2ant3 1029 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  M  e.  Grp )
7 ghmgrp2 16879 . . 3  |-  ( G  e.  ( M  GrpHom  N )  ->  N  e.  Grp )
873ad2ant3 1029 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  N  e.  Grp )
92, 4grpcl 16672 . . . . 5  |-  ( ( N  e.  Grp  /\  x  e.  ( Base `  N )  /\  y  e.  ( Base `  N
) )  ->  (
x  .+  y )  e.  ( Base `  N
) )
1093expb 1207 . . . 4  |-  ( ( N  e.  Grp  /\  ( x  e.  ( Base `  N )  /\  y  e.  ( Base `  N ) ) )  ->  ( x  .+  y )  e.  (
Base `  N )
)
118, 10sylan 474 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  N
)  /\  y  e.  ( Base `  N )
) )  ->  (
x  .+  y )  e.  ( Base `  N
) )
121, 2ghmf 16880 . . . 4  |-  ( F  e.  ( M  GrpHom  N )  ->  F :
( Base `  M ) --> ( Base `  N )
)
13123ad2ant2 1028 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  F : (
Base `  M ) --> ( Base `  N )
)
141, 2ghmf 16880 . . . 4  |-  ( G  e.  ( M  GrpHom  N )  ->  G :
( Base `  M ) --> ( Base `  N )
)
15143ad2ant3 1029 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  G : (
Base `  M ) --> ( Base `  N )
)
16 fvex 5889 . . . 4  |-  ( Base `  M )  e.  _V
1716a1i 11 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( Base `  M
)  e.  _V )
18 inidm 3672 . . 3  |-  ( (
Base `  M )  i^i  ( Base `  M
) )  =  (
Base `  M )
1911, 13, 15, 17, 17, 18off 6558 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  oF  .+  G ) : ( Base `  M
) --> ( Base `  N
) )
201, 3, 4ghmlin 16881 . . . . . . 7  |-  ( ( F  e.  ( M 
GrpHom  N )  /\  x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
)  ->  ( F `  ( x ( +g  `  M ) y ) )  =  ( ( F `  x ) 
.+  ( F `  y ) ) )
21203expb 1207 . . . . . 6  |-  ( ( F  e.  ( M 
GrpHom  N )  /\  (
x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) ) )  -> 
( F `  (
x ( +g  `  M
) y ) )  =  ( ( F `
 x )  .+  ( F `  y ) ) )
22213ad2antl2 1169 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( +g  `  M ) y ) )  =  ( ( F `  x )  .+  ( F `  y )
) )
231, 3, 4ghmlin 16881 . . . . . . 7  |-  ( ( G  e.  ( M 
GrpHom  N )  /\  x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
)  ->  ( G `  ( x ( +g  `  M ) y ) )  =  ( ( G `  x ) 
.+  ( G `  y ) ) )
24233expb 1207 . . . . . 6  |-  ( ( G  e.  ( M 
GrpHom  N )  /\  (
x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) ) )  -> 
( G `  (
x ( +g  `  M
) y ) )  =  ( ( G `
 x )  .+  ( G `  y ) ) )
25243ad2antl3 1170 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( +g  `  M ) y ) )  =  ( ( G `  x )  .+  ( G `  y )
) )
2622, 25oveq12d 6321 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) )  =  ( ( ( F `  x )  .+  ( F `  y )
)  .+  ( ( G `  x )  .+  ( G `  y
) ) ) )
27 simpl1 1009 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  N  e.  Abel )
28 ablcmn 17429 . . . . . 6  |-  ( N  e.  Abel  ->  N  e. CMnd
)
2927, 28syl 17 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  N  e. CMnd )
3013ffvelrnda 6035 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  x  e.  ( Base `  M
) )  ->  ( F `  x )  e.  ( Base `  N
) )
3130adantrr 722 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  x )  e.  ( Base `  N
) )
3213ffvelrnda 6035 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( F `  y )  e.  ( Base `  N
) )
3332adantrl 721 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  y )  e.  ( Base `  N
) )
3415ffvelrnda 6035 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  x  e.  ( Base `  M
) )  ->  ( G `  x )  e.  ( Base `  N
) )
3534adantrr 722 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  x )  e.  ( Base `  N
) )
3615ffvelrnda 6035 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( G `  y )  e.  ( Base `  N
) )
3736adantrl 721 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
382, 4cmn4 17442 . . . . 5  |-  ( ( N  e. CMnd  /\  (
( F `  x
)  e.  ( Base `  N )  /\  ( F `  y )  e.  ( Base `  N
) )  /\  (
( G `  x
)  e.  ( Base `  N )  /\  ( G `  y )  e.  ( Base `  N
) ) )  -> 
( ( ( F `
 x )  .+  ( F `  y ) )  .+  ( ( G `  x ) 
.+  ( G `  y ) ) )  =  ( ( ( F `  x ) 
.+  ( G `  x ) )  .+  ( ( F `  y )  .+  ( G `  y )
) ) )
3929, 31, 33, 35, 37, 38syl122anc 1274 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( ( F `  x )  .+  ( F `  y )
)  .+  ( ( G `  x )  .+  ( G `  y
) ) )  =  ( ( ( F `
 x )  .+  ( G `  x ) )  .+  ( ( F `  y ) 
.+  ( G `  y ) ) ) )
4026, 39eqtrd 2464 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) )  =  ( ( ( F `  x )  .+  ( G `  x )
)  .+  ( ( F `  y )  .+  ( G `  y
) ) ) )
41 ffn 5744 . . . . . 6  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  F  Fn  ( Base `  M )
)
4213, 41syl 17 . . . . 5  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  F  Fn  ( Base `  M ) )
4342adantr 467 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  F  Fn  ( Base `  M
) )
44 ffn 5744 . . . . . 6  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
4515, 44syl 17 . . . . 5  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  G  Fn  ( Base `  M ) )
4645adantr 467 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
4716a1i 11 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  M )  e. 
_V )
481, 3grpcl 16672 . . . . . 6  |-  ( ( M  e.  Grp  /\  x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) )  ->  (
x ( +g  `  M
) y )  e.  ( Base `  M
) )
49483expb 1207 . . . . 5  |-  ( ( M  e.  Grp  /\  ( x  e.  ( Base `  M )  /\  y  e.  ( Base `  M ) ) )  ->  ( x ( +g  `  M ) y )  e.  (
Base `  M )
)
506, 49sylan 474 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( +g  `  M
) y )  e.  ( Base `  M
) )
51 fnfvof 6557 . . . 4  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  ( x ( +g  `  M ) y )  e.  ( Base `  M
) ) )  -> 
( ( F  oF  .+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( F `  ( x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) ) )
5243, 46, 47, 50, 51syl22anc 1266 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( F `  ( x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) ) )
53 simprl 763 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  M
) )
54 fnfvof 6557 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  x  e.  ( Base `  M ) ) )  ->  ( ( F  oF  .+  G
) `  x )  =  ( ( F `
 x )  .+  ( G `  x ) ) )
5543, 46, 47, 53, 54syl22anc 1266 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  x )  =  ( ( F `  x
)  .+  ( G `  x ) ) )
56 simprr 765 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
57 fnfvof 6557 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  y  e.  ( Base `  M ) ) )  ->  ( ( F  oF  .+  G
) `  y )  =  ( ( F `
 y )  .+  ( G `  y ) ) )
5843, 46, 47, 56, 57syl22anc 1266 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  y )  =  ( ( F `  y
)  .+  ( G `  y ) ) )
5955, 58oveq12d 6321 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( ( F  oF  .+  G ) `  x )  .+  (
( F  oF  .+  G ) `  y ) )  =  ( ( ( F `
 x )  .+  ( G `  x ) )  .+  ( ( F `  y ) 
.+  ( G `  y ) ) ) )
6040, 52, 593eqtr4d 2474 . 2  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  oF  .+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( F  oF  .+  G ) `  x )  .+  (
( F  oF  .+  G ) `  y ) ) )
611, 2, 3, 4, 6, 8, 19, 60isghmd 16885 1  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  oF  .+  G )  e.  ( M  GrpHom  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   _Vcvv 3082    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303    oFcof 6541   Basecbs 15114   +g cplusg 15183   Grpcgrp 16662    GrpHom cghm 16873  CMndccmn 17423   Abelcabl 17424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-ghm 16874  df-cmn 17425  df-abl 17426
This theorem is referenced by:  lmhmplusg  18260  nmotri  21752  nghmplusg  21753
  Copyright terms: Public domain W3C validator