MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgpreima Structured version   Unicode version

Theorem ghmnsgpreima 15771
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)

Proof of Theorem ghmnsgpreima
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 15713 . . 3  |-  ( V  e.  (NrmSGrp `  T
)  ->  V  e.  (SubGrp `  T ) )
2 ghmpreima 15768 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
31, 2sylan2 474 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
4 ghmgrp1 15749 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
54ad2antrr 725 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  S  e.  Grp )
6 simprl 755 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  x  e.  (
Base `  S )
)
7 simprr 756 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  ( `' F " V ) )
8 simpll 753 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  e.  ( S  GrpHom  T ) )
9 eqid 2443 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
10 eqid 2443 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
119, 10ghmf 15751 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
128, 11syl 16 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F : (
Base `  S ) --> ( Base `  T )
)
13 ffn 5559 . . . . . . . . . 10  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
1412, 13syl 16 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  Fn  ( Base `  S ) )
15 elpreima 5823 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
1614, 15syl 16 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
177, 16mpbid 210 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) )
1817simpld 459 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  (
Base `  S )
)
19 eqid 2443 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
209, 19grpcl 15551 . . . . . 6  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
215, 6, 18, 20syl3anc 1218 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
22 eqid 2443 . . . . . 6  |-  ( -g `  S )  =  (
-g `  S )
239, 22grpsubcl 15606 . . . . 5  |-  ( ( S  e.  Grp  /\  ( x ( +g  `  S ) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( (
x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
245, 21, 6, 23syl3anc 1218 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
25 eqid 2443 . . . . . . . 8  |-  ( -g `  T )  =  (
-g `  T )
269, 22, 25ghmsub 15755 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
x ( +g  `  S
) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
278, 21, 6, 26syl3anc 1218 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
28 eqid 2443 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
299, 19, 28ghmlin 15752 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
308, 6, 18, 29syl3anc 1218 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
3130oveq1d 6106 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( F `
 ( x ( +g  `  S ) y ) ) (
-g `  T )
( F `  x
) )  =  ( ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) ( -g `  T
) ( F `  x ) ) )
3227, 31eqtrd 2475 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) ) )
33 simplr 754 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  V  e.  (NrmSGrp `  T ) )
3412, 6ffvelrnd 5844 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  x )  e.  (
Base `  T )
)
3517simprd 463 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  y )  e.  V
)
3610, 28, 25nsgconj 15714 . . . . . 6  |-  ( ( V  e.  (NrmSGrp `  T
)  /\  ( F `  x )  e.  (
Base `  T )  /\  ( F `  y
)  e.  V )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3733, 34, 35, 36syl3anc 1218 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3832, 37eqeltrd 2517 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V )
39 elpreima 5823 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( `' F " V )  <->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( Base `  S
)  /\  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V ) ) )
4014, 39syl 16 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V )  <-> 
( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )  /\  ( F `  (
( x ( +g  `  S ) y ) ( -g `  S
) x ) )  e.  V ) ) )
4124, 38, 40mpbir2and 913 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
4241ralrimivva 2808 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
439, 19, 22isnsg3 15715 . 2  |-  ( ( `' F " V )  e.  (NrmSGrp `  S
)  <->  ( ( `' F " V )  e.  (SubGrp `  S
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) ) )
443, 42, 43sylanbrc 664 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   `'ccnv 4839   "cima 4843    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238   Grpcgrp 15410   -gcsg 15413  SubGrpcsubg 15675  NrmSGrpcnsg 15676    GrpHom cghm 15744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-0g 14380  df-mnd 15415  df-grp 15545  df-minusg 15546  df-sbg 15547  df-subg 15678  df-nsg 15679  df-ghm 15745
This theorem is referenced by:  ghmker  15772
  Copyright terms: Public domain W3C validator