MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmlin Structured version   Unicode version

Theorem ghmlin 15732
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x  |-  X  =  ( Base `  S
)
ghmlin.a  |-  .+  =  ( +g  `  S )
ghmlin.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
ghmlin  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )

Proof of Theorem ghmlin
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6  |-  X  =  ( Base `  S
)
2 eqid 2433 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 ghmlin.a . . . . . 6  |-  .+  =  ( +g  `  S )
4 ghmlin.b . . . . . 6  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4isghm 15727 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> ( Base `  T )  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b ) )  =  ( ( F `  a )  .+^  ( F `
 b ) ) ) ) )
65simprbi 461 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> ( Base `  T
)  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) ) )
76simprd 460 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
8 oveq1 6087 . . . . . 6  |-  ( a  =  U  ->  (
a  .+  b )  =  ( U  .+  b ) )
98fveq2d 5683 . . . . 5  |-  ( a  =  U  ->  ( F `  ( a  .+  b ) )  =  ( F `  ( U  .+  b ) ) )
10 fveq2 5679 . . . . . 6  |-  ( a  =  U  ->  ( F `  a )  =  ( F `  U ) )
1110oveq1d 6095 . . . . 5  |-  ( a  =  U  ->  (
( F `  a
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 b ) ) )
129, 11eqeq12d 2447 . . . 4  |-  ( a  =  U  ->  (
( F `  (
a  .+  b )
)  =  ( ( F `  a ) 
.+^  ( F `  b ) )  <->  ( F `  ( U  .+  b
) )  =  ( ( F `  U
)  .+^  ( F `  b ) ) ) )
13 oveq2 6088 . . . . . 6  |-  ( b  =  V  ->  ( U  .+  b )  =  ( U  .+  V
) )
1413fveq2d 5683 . . . . 5  |-  ( b  =  V  ->  ( F `  ( U  .+  b ) )  =  ( F `  ( U  .+  V ) ) )
15 fveq2 5679 . . . . . 6  |-  ( b  =  V  ->  ( F `  b )  =  ( F `  V ) )
1615oveq2d 6096 . . . . 5  |-  ( b  =  V  ->  (
( F `  U
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
1714, 16eqeq12d 2447 . . . 4  |-  ( b  =  V  ->  (
( F `  ( U  .+  b ) )  =  ( ( F `
 U )  .+^  ( F `  b ) )  <->  ( F `  ( U  .+  V ) )  =  ( ( F `  U ) 
.+^  ( F `  V ) ) ) )
1812, 17rspc2v 3068 . . 3  |-  ( ( U  e.  X  /\  V  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) )  -> 
( F `  ( U  .+  V ) )  =  ( ( F `
 U )  .+^  ( F `  V ) ) ) )
197, 18mpan9 466 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  X  /\  V  e.  X )
)  ->  ( F `  ( U  .+  V
) )  =  ( ( F `  U
)  .+^  ( F `  V ) ) )
20193impb 1176 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   -->wf 5402   ` cfv 5406  (class class class)co 6080   Basecbs 14157   +g cplusg 14221   Grpcgrp 15393    GrpHom cghm 15724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-ghm 15725
This theorem is referenced by:  ghmid  15733  ghminv  15734  ghmsub  15735  ghmmhm  15737  ghmrn  15740  resghm  15743  ghmpreima  15748  ghmnsgima  15750  ghmnsgpreima  15751  ghmf1o  15756  lactghmga  15889  invghm  16298  ghmplusg  16308  srngadd  16866  islmhm2  17041  cygznlem3  17844  psgnco  17855  evpmodpmf1o  17868  ipdir  17910  mdetralt  18256  ghmcnp  19527  evlslem1  21367  evl1addd  21385  mpfind  21396  ply1rem  21520  dchrptlem2  22489  abliso  25983  rhmopp  26140  qqhghm  26271  qqhrhm  26272  gicabl  29299
  Copyright terms: Public domain W3C validator