MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmid Structured version   Unicode version

Theorem ghmid 15746
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmid.y  |-  Y  =  ( 0g `  S
)
ghmid.z  |-  .0.  =  ( 0g `  T )
Assertion
Ref Expression
ghmid  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )

Proof of Theorem ghmid
StepHypRef Expression
1 ghmgrp1 15742 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
2 eqid 2441 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
3 ghmid.y . . . . . . 7  |-  Y  =  ( 0g `  S
)
42, 3grpidcl 15559 . . . . . 6  |-  ( S  e.  Grp  ->  Y  e.  ( Base `  S
) )
51, 4syl 16 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  Y  e.  ( Base `  S )
)
6 eqid 2441 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
7 eqid 2441 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
82, 6, 7ghmlin 15745 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  Y  e.  ( Base `  S
)  /\  Y  e.  ( Base `  S )
)  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( ( F `  Y ) ( +g  `  T
) ( F `  Y ) ) )
95, 5, 8mpd3an23 1311 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( ( F `  Y ) ( +g  `  T
) ( F `  Y ) ) )
102, 6, 3grplid 15561 . . . . . 6  |-  ( ( S  e.  Grp  /\  Y  e.  ( Base `  S ) )  -> 
( Y ( +g  `  S ) Y )  =  Y )
111, 5, 10syl2anc 656 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( Y
( +g  `  S ) Y )  =  Y )
1211fveq2d 5692 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( Y ( +g  `  S ) Y ) )  =  ( F `
 Y ) )
139, 12eqtr3d 2475 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ( F `  Y )
( +g  `  T ) ( F `  Y
) )  =  ( F `  Y ) )
14 ghmgrp2 15743 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
15 eqid 2441 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
162, 15ghmf 15744 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
1716, 5ffvelrnd 5841 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  e.  (
Base `  T )
)
18 ghmid.z . . . . 5  |-  .0.  =  ( 0g `  T )
1915, 7, 18grpid 15566 . . . 4  |-  ( ( T  e.  Grp  /\  ( F `  Y )  e.  ( Base `  T
) )  ->  (
( ( F `  Y ) ( +g  `  T ) ( F `
 Y ) )  =  ( F `  Y )  <->  .0.  =  ( F `  Y ) ) )
2014, 17, 19syl2anc 656 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( (
( F `  Y
) ( +g  `  T
) ( F `  Y ) )  =  ( F `  Y
)  <->  .0.  =  ( F `  Y )
) )
2113, 20mpbid 210 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  .0.  =  ( F `  Y ) )
2221eqcomd 2446 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  Y )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1364    e. wcel 1761   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   0gc0g 14374   Grpcgrp 15406    GrpHom cghm 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-0g 14376  df-mnd 15411  df-grp 15538  df-ghm 15738
This theorem is referenced by:  ghminv  15747  ghmmhm  15750  ghmpreima  15761  ghmf1  15768  lactghmga  15902  srng0  16925  islmhm2  17097  evlslem2  17573  evlslem6  17574  evlslem6OLD  17575  evlslem3  17576  zrh0  17904  chrrhm  17921  zndvds0  17942  ip0l  18024  nmolb2d  20256  nmoi  20266  nmoix  20267  nmoleub  20269  nmoleub2lem2  20630  nmhmcn  20634  dchrptlem2  22563  kerf1hrm  26227
  Copyright terms: Public domain W3C validator