MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1 Structured version   Unicode version

Theorem ghmf1 16619
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1.x  |-  X  =  ( Base `  S
)
ghmf1.y  |-  Y  =  ( Base `  T
)
ghmf1.z  |-  .0.  =  ( 0g `  S )
ghmf1.u  |-  U  =  ( 0g `  T
)
Assertion
Ref Expression
ghmf1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-> Y  <->  A. x  e.  X  ( ( F `  x )  =  U  ->  x  =  .0.  ) ) )
Distinct variable groups:    x, F    x, S    x, T    x, U    x, X    x, Y    x,  .0.

Proof of Theorem ghmf1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf1.z . . . . . . . 8  |-  .0.  =  ( 0g `  S )
2 ghmf1.u . . . . . . . 8  |-  U  =  ( 0g `  T
)
31, 2ghmid 16597 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  .0.  )  =  U )
43ad2antrr 724 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  ( F `  .0.  )  =  U )
54eqeq2d 2416 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  ( ( F `  x )  =  ( F `  .0.  )  <->  ( F `  x )  =  U ) )
6 simplr 754 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  F : X -1-1-> Y )
7 simpr 459 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  x  e.  X )
8 ghmgrp1 16593 . . . . . . . 8  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
98ad2antrr 724 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  S  e.  Grp )
10 ghmf1.x . . . . . . . 8  |-  X  =  ( Base `  S
)
1110, 1grpidcl 16402 . . . . . . 7  |-  ( S  e.  Grp  ->  .0.  e.  X )
129, 11syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  .0.  e.  X )
13 f1fveq 6151 . . . . . 6  |-  ( ( F : X -1-1-> Y  /\  ( x  e.  X  /\  .0.  e.  X ) )  ->  ( ( F `  x )  =  ( F `  .0.  )  <->  x  =  .0.  ) )
146, 7, 12, 13syl12anc 1228 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  ( ( F `  x )  =  ( F `  .0.  )  <->  x  =  .0.  ) )
155, 14bitr3d 255 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  ( ( F `  x )  =  U  <->  x  =  .0.  ) )
1615biimpd 207 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-> Y )  /\  x  e.  X
)  ->  ( ( F `  x )  =  U  ->  x  =  .0.  ) )
1716ralrimiva 2818 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-> Y )  ->  A. x  e.  X  ( ( F `  x )  =  U  ->  x  =  .0.  ) )
18 ghmf1.y . . . . 5  |-  Y  =  ( Base `  T
)
1910, 18ghmf 16595 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )
2019adantr 463 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  A. x  e.  X  (
( F `  x
)  =  U  ->  x  =  .0.  )
)  ->  F : X
--> Y )
21 eqid 2402 . . . . . . . . . 10  |-  ( -g `  S )  =  (
-g `  S )
22 eqid 2402 . . . . . . . . . 10  |-  ( -g `  T )  =  (
-g `  T )
2310, 21, 22ghmsub 16599 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  y  e.  X  /\  z  e.  X )  ->  ( F `  ( y
( -g `  S ) z ) )  =  ( ( F `  y ) ( -g `  T ) ( F `
 z ) ) )
24233expb 1198 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( F `  ( y ( -g `  S ) z ) )  =  ( ( F `  y ) ( -g `  T
) ( F `  z ) ) )
2524adantlr 713 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( -g `  S
) z ) )  =  ( ( F `
 y ) (
-g `  T )
( F `  z
) ) )
2625eqeq1d 2404 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  ( y ( -g `  S ) z ) )  =  U  <->  ( ( F `  y )
( -g `  T ) ( F `  z
) )  =  U ) )
278adantr 463 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  A. x  e.  X  (
( F `  x
)  =  U  ->  x  =  .0.  )
)  ->  S  e.  Grp )
2810, 21grpsubcl 16442 . . . . . . . . 9  |-  ( ( S  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( -g `  S ) z )  e.  X )
29283expb 1198 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( -g `  S
) z )  e.  X )
3027, 29sylan 469 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( -g `  S ) z )  e.  X )
31 simplr 754 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  A. x  e.  X  ( ( F `  x )  =  U  ->  x  =  .0.  ) )
32 fveq2 5849 . . . . . . . . . 10  |-  ( x  =  ( y (
-g `  S )
z )  ->  ( F `  x )  =  ( F `  ( y ( -g `  S ) z ) ) )
3332eqeq1d 2404 . . . . . . . . 9  |-  ( x  =  ( y (
-g `  S )
z )  ->  (
( F `  x
)  =  U  <->  ( F `  ( y ( -g `  S ) z ) )  =  U ) )
34 eqeq1 2406 . . . . . . . . 9  |-  ( x  =  ( y (
-g `  S )
z )  ->  (
x  =  .0.  <->  ( y
( -g `  S ) z )  =  .0.  ) )
3533, 34imbi12d 318 . . . . . . . 8  |-  ( x  =  ( y (
-g `  S )
z )  ->  (
( ( F `  x )  =  U  ->  x  =  .0.  )  <->  ( ( F `
 ( y (
-g `  S )
z ) )  =  U  ->  ( y
( -g `  S ) z )  =  .0.  ) ) )
3635rspcv 3156 . . . . . . 7  |-  ( ( y ( -g `  S
) z )  e.  X  ->  ( A. x  e.  X  (
( F `  x
)  =  U  ->  x  =  .0.  )  ->  ( ( F `  ( y ( -g `  S ) z ) )  =  U  -> 
( y ( -g `  S ) z )  =  .0.  ) ) )
3730, 31, 36sylc 59 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  ( y ( -g `  S ) z ) )  =  U  -> 
( y ( -g `  S ) z )  =  .0.  ) )
3826, 37sylbird 235 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( F `
 y ) (
-g `  T )
( F `  z
) )  =  U  ->  ( y (
-g `  S )
z )  =  .0.  ) )
39 ghmgrp2 16594 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
4039ad2antrr 724 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  T  e.  Grp )
4119ad2antrr 724 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  F : X --> Y )
42 simprl 756 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
4341, 42ffvelrnd 6010 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  e.  Y )
44 simprr 758 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
4541, 44ffvelrnd 6010 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  e.  Y )
4618, 2, 22grpsubeq0 16448 . . . . . 6  |-  ( ( T  e.  Grp  /\  ( F `  y )  e.  Y  /\  ( F `  z )  e.  Y )  ->  (
( ( F `  y ) ( -g `  T ) ( F `
 z ) )  =  U  <->  ( F `  y )  =  ( F `  z ) ) )
4740, 43, 45, 46syl3anc 1230 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( F `
 y ) (
-g `  T )
( F `  z
) )  =  U  <-> 
( F `  y
)  =  ( F `
 z ) ) )
488ad2antrr 724 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  ->  S  e.  Grp )
4910, 1, 21grpsubeq0 16448 . . . . . 6  |-  ( ( S  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( ( y (
-g `  S )
z )  =  .0.  <->  y  =  z ) )
5048, 42, 44, 49syl3anc 1230 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( y (
-g `  S )
z )  =  .0.  <->  y  =  z ) )
5138, 47, 503imtr3d 267 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  A. x  e.  X  ( ( F `  x
)  =  U  ->  x  =  .0.  )
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
5251ralrimivva 2825 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  A. x  e.  X  (
( F `  x
)  =  U  ->  x  =  .0.  )
)  ->  A. y  e.  X  A. z  e.  X  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
53 dff13 6147 . . 3  |-  ( F : X -1-1-> Y  <->  ( F : X --> Y  /\  A. y  e.  X  A. z  e.  X  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
5420, 52, 53sylanbrc 662 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  A. x  e.  X  (
( F `  x
)  =  U  ->  x  =  .0.  )
)  ->  F : X -1-1-> Y )
5517, 54impbida 833 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-> Y  <->  A. x  e.  X  ( ( F `  x )  =  U  ->  x  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   -->wf 5565   -1-1->wf1 5566   ` cfv 5569  (class class class)co 6278   Basecbs 14841   0gc0g 15054   Grpcgrp 16377   -gcsg 16379    GrpHom cghm 16588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382  df-sbg 16383  df-ghm 16589
This theorem is referenced by:  cayleylem2  16762  f1rhm0to0ALT  17710  fidomndrnglem  18275  islindf5  19166  pwssplit4  35397
  Copyright terms: Public domain W3C validator