MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmeql Structured version   Unicode version

Theorem ghmeql 16163
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ghmeql  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)

Proof of Theorem ghmeql
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 16151 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
2 ghmmhm 16151 . . 3  |-  ( G  e.  ( S  GrpHom  T )  ->  G  e.  ( S MndHom  T ) )
3 mhmeql 15869 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
41, 2, 3syl2an 477 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
5 ghmgrp1 16143 . . . . . . . . . 10  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
65adantr 465 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  S  e.  Grp )
76adantr 465 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  S  e.  Grp )
8 simprl 756 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  x  e.  (
Base `  S )
)
9 eqid 2443 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
10 eqid 2443 . . . . . . . . 9  |-  ( invg `  S )  =  ( invg `  S )
119, 10grpinvcl 15969 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  x
)  e.  ( Base `  S ) )
127, 8, 11syl2anc 661 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e.  ( Base `  S
) )
13 simprr 757 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  x )  =  ( G `  x ) )
1413fveq2d 5860 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  T ) `
 ( F `  x ) )  =  ( ( invg `  T ) `  ( G `  x )
) )
15 eqid 2443 . . . . . . . . . 10  |-  ( invg `  T )  =  ( invg `  T )
169, 10, 15ghminv 16148 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( F `  x ) ) )
1716ad2ant2r 746 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( F `  x )
) )
189, 10, 15ghminv 16148 . . . . . . . . 9  |-  ( ( G  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( G `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( G `  x ) ) )
1918ad2ant2lr 747 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( G `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( G `  x )
) )
2014, 17, 193eqtr4d 2494 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) )
21 fveq2 5856 . . . . . . . . 9  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( F `  y
)  =  ( F `
 ( ( invg `  S ) `
 x ) ) )
22 fveq2 5856 . . . . . . . . 9  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( G `  y
)  =  ( G `
 ( ( invg `  S ) `
 x ) ) )
2321, 22eqeq12d 2465 . . . . . . . 8  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( ( F `  y )  =  ( G `  y )  <-> 
( F `  (
( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) ) )
2423elrab 3243 . . . . . . 7  |-  ( ( ( invg `  S ) `  x
)  e.  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  <->  ( (
( invg `  S ) `  x
)  e.  ( Base `  S )  /\  ( F `  ( ( invg `  S ) `
 x ) )  =  ( G `  ( ( invg `  S ) `  x
) ) ) )
2512, 20, 24sylanbrc 664 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
2625expr 615 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  x  e.  ( Base `  S ) )  -> 
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
2726ralrimiva 2857 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  ( Base `  S
) ( ( F `
 x )  =  ( G `  x
)  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
28 fveq2 5856 . . . . . 6  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
29 fveq2 5856 . . . . . 6  |-  ( y  =  x  ->  ( G `  y )  =  ( G `  x ) )
3028, 29eqeq12d 2465 . . . . 5  |-  ( y  =  x  ->  (
( F `  y
)  =  ( G `
 y )  <->  ( F `  x )  =  ( G `  x ) ) )
3130ralrab 3247 . . . 4  |-  ( A. x  e.  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ( ( invg `  S
) `  x )  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  <->  A. x  e.  (
Base `  S )
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
3227, 31sylibr 212 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
33 eqid 2443 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
349, 33ghmf 16145 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
3534adantr 465 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F :
( Base `  S ) --> ( Base `  T )
)
36 ffn 5721 . . . . . 6  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
3735, 36syl 16 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F  Fn  ( Base `  S )
)
389, 33ghmf 16145 . . . . . . 7  |-  ( G  e.  ( S  GrpHom  T )  ->  G :
( Base `  S ) --> ( Base `  T )
)
3938adantl 466 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G :
( Base `  S ) --> ( Base `  T )
)
40 ffn 5721 . . . . . 6  |-  ( G : ( Base `  S
) --> ( Base `  T
)  ->  G  Fn  ( Base `  S )
)
4139, 40syl 16 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G  Fn  ( Base `  S )
)
42 fndmin 5979 . . . . 5  |-  ( ( F  Fn  ( Base `  S )  /\  G  Fn  ( Base `  S
) )  ->  dom  ( F  i^i  G )  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) } )
4337, 41, 42syl2anc 661 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  =  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
44 eleq2 2516 . . . . 5  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  (
( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4544raleqbi1dv 3048 . . . 4  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4643, 45syl 16 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4732, 46mpbird 232 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) )
4810issubg3 16093 . . 3  |-  ( S  e.  Grp  ->  ( dom  ( F  i^i  G
)  e.  (SubGrp `  S )  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S
)  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) ) ) )
496, 48syl 16 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( dom  ( F  i^i  G )  e.  (SubGrp `  S
)  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S )  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G ) ) ) )
504, 47, 49mpbir2and 922 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   {crab 2797    i^i cin 3460   dom cdm 4989    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281   Basecbs 14509   MndHom cmhm 15838  SubMndcsubmnd 15839   Grpcgrp 15927   invgcminusg 15928  SubGrpcsubg 16069    GrpHom cghm 16138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-0g 14716  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15840  df-submnd 15841  df-grp 15931  df-minusg 15932  df-subg 16072  df-ghm 16139
This theorem is referenced by:  rhmeql  17333  lmhmeql  17575
  Copyright terms: Public domain W3C validator