MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Unicode version

Theorem ghmcyg 15460
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
ghmcyg.1  |-  C  =  ( Base `  H
)
Assertion
Ref Expression
ghmcyg  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )

Proof of Theorem ghmcyg
Dummy variables  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2404 . . . 4  |-  (.g `  G
)  =  (.g `  G
)
31, 2iscyg 15444 . . 3  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )
43simprbi 451 . 2  |-  ( G  e. CycGrp  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B )
5 ghmcyg.1 . . . 4  |-  C  =  ( Base `  H
)
6 eqid 2404 . . . 4  |-  (.g `  H
)  =  (.g `  H
)
7 ghmgrp2 14964 . . . . 5  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
87ad2antrr 707 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e.  Grp )
9 fof 5612 . . . . . 6  |-  ( F : B -onto-> C  ->  F : B --> C )
109ad2antlr 708 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B --> C )
11 simprl 733 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  x  e.  B )
1210, 11ffvelrnd 5830 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F `  x )  e.  C )
13 simplr 732 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B -onto-> C )
14 foeq2 5609 . . . . . . . . 9  |-  ( ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1514ad2antll 710 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1613, 15mpbird 224 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C )
17 foelrn 5847 . . . . . . 7  |-  ( ( F : ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  /\  y  e.  C )  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z ) )
1816, 17sylan 458 . . . . . 6  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z ) )
19 ovex 6065 . . . . . . . 8  |-  ( m (.g `  G ) x )  e.  _V
2019rgenw 2733 . . . . . . 7  |-  A. m  e.  ZZ  ( m (.g `  G ) x )  e.  _V
21 oveq1 6047 . . . . . . . . 9  |-  ( n  =  m  ->  (
n (.g `  G ) x )  =  ( m (.g `  G ) x ) )
2221cbvmptv 4260 . . . . . . . 8  |-  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  ( m  e.  ZZ  |->  ( m (.g `  G ) x ) )
23 fveq2 5687 . . . . . . . . 9  |-  ( z  =  ( m (.g `  G ) x )  ->  ( F `  z )  =  ( F `  ( m (.g `  G ) x ) ) )
2423eqeq2d 2415 . . . . . . . 8  |-  ( z  =  ( m (.g `  G ) x )  ->  ( y  =  ( F `  z
)  <->  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2522, 24rexrnmpt 5838 . . . . . . 7  |-  ( A. m  e.  ZZ  (
m (.g `  G ) x )  e.  _V  ->  ( E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z )  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2620, 25ax-mp 8 . . . . . 6  |-  ( E. z  e.  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z
)  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) ) )
2718, 26sylib 189 . . . . 5  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) )
28 simp-4l 743 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  F  e.  ( G  GrpHom  H ) )
29 simpr 448 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  m  e.  ZZ )
3011ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  x  e.  B )
311, 2, 6ghmmulg 14973 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  m  e.  ZZ  /\  x  e.  B )  ->  ( F `  ( m
(.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3228, 29, 30, 31syl3anc 1184 . . . . . . 7  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( F `
 ( m (.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3332eqeq2d 2415 . . . . . 6  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( y  =  ( F `  ( m (.g `  G
) x ) )  <-> 
y  =  ( m (.g `  H ) ( F `  x ) ) ) )
3433rexbidva 2683 . . . . 5  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  ( E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) )  <->  E. m  e.  ZZ  y  =  ( m
(.g `  H ) ( F `  x ) ) ) )
3527, 34mpbid 202 . . . 4  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( m (.g `  H ) ( F `  x ) ) )
365, 6, 8, 12, 35iscygd 15452 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e. CycGrp )
3736rexlimdvaa 2791 . 2  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  H  e. CycGrp ) )
384, 37syl5 30 1  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    e. cmpt 4226   ran crn 4838   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040   ZZcz 10238   Basecbs 13424   Grpcgrp 14640  .gcmg 14644    GrpHom cghm 14958  CycGrpccyg 15442
This theorem is referenced by:  giccyg  15464
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-seq 11279  df-0g 13682  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-mulg 14770  df-ghm 14959  df-cyg 15443
  Copyright terms: Public domain W3C validator