MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexval Structured version   Unicode version

Theorem gexval 16077
Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016.)
Hypotheses
Ref Expression
gexval.1  |-  X  =  ( Base `  G
)
gexval.2  |-  .x.  =  (.g
`  G )
gexval.3  |-  .0.  =  ( 0g `  G )
gexval.4  |-  E  =  (gEx `  G )
gexval.i  |-  I  =  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
Assertion
Ref Expression
gexval  |-  ( G  e.  V  ->  E  =  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) ) )
Distinct variable groups:    x, y,  .0.    x, G, y    x, V, y    x,  .x. , y    x, X
Allowed substitution hints:    E( x, y)    I( x, y)    X( y)

Proof of Theorem gexval
Dummy variables  g 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexval.4 . 2  |-  E  =  (gEx `  G )
2 df-gex 16033 . . . 4  |- gEx  =  ( g  e.  _V  |->  [_ { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) }  /  i ]_ if ( i  =  (/) ,  0 ,  sup ( i ,  RR ,  `'  <  ) ) )
32a1i 11 . . 3  |-  ( G  e.  V  -> gEx  =  ( g  e.  _V  |->  [_ { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) }  /  i ]_ if ( i  =  (/) ,  0 ,  sup ( i ,  RR ,  `'  <  ) ) ) )
4 nnex 10328 . . . . . 6  |-  NN  e.  _V
54rabex 4443 . . . . 5  |-  { y  e.  NN  |  A. x  e.  ( Base `  g ) ( y (.g `  g ) x )  =  ( 0g
`  g ) }  e.  _V
65a1i 11 . . . 4  |-  ( ( G  e.  V  /\  g  =  G )  ->  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) }  e.  _V )
7 simpr 461 . . . . . . . . . . . . 13  |-  ( ( G  e.  V  /\  g  =  G )  ->  g  =  G )
87fveq2d 5695 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( Base `  g
)  =  ( Base `  G ) )
9 gexval.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
108, 9syl6eqr 2493 . . . . . . . . . . 11  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( Base `  g
)  =  X )
117fveq2d 5695 . . . . . . . . . . . . . 14  |-  ( ( G  e.  V  /\  g  =  G )  ->  (.g `  g )  =  (.g `  G ) )
12 gexval.2 . . . . . . . . . . . . . 14  |-  .x.  =  (.g
`  G )
1311, 12syl6eqr 2493 . . . . . . . . . . . . 13  |-  ( ( G  e.  V  /\  g  =  G )  ->  (.g `  g )  = 
.x.  )
1413oveqd 6108 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( y (.g `  g
) x )  =  ( y  .x.  x
) )
157fveq2d 5695 . . . . . . . . . . . . 13  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( 0g `  g
)  =  ( 0g
`  G ) )
16 gexval.3 . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  G )
1715, 16syl6eqr 2493 . . . . . . . . . . . 12  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( 0g `  g
)  =  .0.  )
1814, 17eqeq12d 2457 . . . . . . . . . . 11  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( ( y (.g `  g ) x )  =  ( 0g `  g )  <->  ( y  .x.  x )  =  .0.  ) )
1910, 18raleqbidv 2931 . . . . . . . . . 10  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( A. x  e.  ( Base `  g
) ( y (.g `  g ) x )  =  ( 0g `  g )  <->  A. x  e.  X  ( y  .x.  x )  =  .0.  ) )
2019rabbidv 2964 . . . . . . . . 9  |-  ( ( G  e.  V  /\  g  =  G )  ->  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) }  =  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
)
21 gexval.i . . . . . . . . 9  |-  I  =  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
2220, 21syl6eqr 2493 . . . . . . . 8  |-  ( ( G  e.  V  /\  g  =  G )  ->  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) }  =  I )
2322eqeq2d 2454 . . . . . . 7  |-  ( ( G  e.  V  /\  g  =  G )  ->  ( i  =  {
y  e.  NN  |  A. x  e.  ( Base `  g ) ( y (.g `  g ) x )  =  ( 0g
`  g ) }  <-> 
i  =  I ) )
2423biimpa 484 . . . . . 6  |-  ( ( ( G  e.  V  /\  g  =  G
)  /\  i  =  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) } )  -> 
i  =  I )
2524eqeq1d 2451 . . . . 5  |-  ( ( ( G  e.  V  /\  g  =  G
)  /\  i  =  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) } )  -> 
( i  =  (/)  <->  I  =  (/) ) )
2624supeq1d 7696 . . . . 5  |-  ( ( ( G  e.  V  /\  g  =  G
)  /\  i  =  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) } )  ->  sup ( i ,  RR ,  `'  <  )  =  sup ( I ,  RR ,  `'  <  ) )
2725, 26ifbieq2d 3814 . . . 4  |-  ( ( ( G  e.  V  /\  g  =  G
)  /\  i  =  { y  e.  NN  |  A. x  e.  (
Base `  g )
( y (.g `  g
) x )  =  ( 0g `  g
) } )  ->  if ( i  =  (/) ,  0 ,  sup (
i ,  RR ,  `'  <  ) )  =  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) ) )
286, 27csbied 3314 . . 3  |-  ( ( G  e.  V  /\  g  =  G )  ->  [_ { y  e.  NN  |  A. x  e.  ( Base `  g
) ( y (.g `  g ) x )  =  ( 0g `  g ) }  / 
i ]_ if ( i  =  (/) ,  0 ,  sup ( i ,  RR ,  `'  <  ) )  =  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) ) )
29 elex 2981 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
30 c0ex 9380 . . . . 5  |-  0  e.  _V
31 gtso 9456 . . . . . 6  |-  `'  <  Or  RR
3231supex 7713 . . . . 5  |-  sup (
I ,  RR ,  `'  <  )  e.  _V
3330, 32ifex 3858 . . . 4  |-  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) )  e.  _V
3433a1i 11 . . 3  |-  ( G  e.  V  ->  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) )  e.  _V )
353, 28, 29, 34fvmptd 5779 . 2  |-  ( G  e.  V  ->  (gEx `  G )  =  if ( I  =  (/) ,  0 ,  sup (
I ,  RR ,  `'  <  ) ) )
361, 35syl5eq 2487 1  |-  ( G  e.  V  ->  E  =  if ( I  =  (/) ,  0 ,  sup ( I ,  RR ,  `'  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   {crab 2719   _Vcvv 2972   [_csb 3288   (/)c0 3637   ifcif 3791    e. cmpt 4350   `'ccnv 4839   ` cfv 5418  (class class class)co 6091   supcsup 7690   RRcr 9281   0cc0 9282    < clt 9418   NNcn 10322   Basecbs 14174   0gc0g 14378  .gcmg 15414  gExcgex 16029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-i2m1 9350  ax-1ne0 9351  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-ltxr 9423  df-nn 10323  df-gex 16033
This theorem is referenced by:  gexlem1  16078  gexlem2  16081
  Copyright terms: Public domain W3C validator