MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexexlem Structured version   Unicode version

Theorem gexexlem 16339
Description: Lemma for gexex 16340. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1  |-  X  =  ( Base `  G
)
gexex.2  |-  E  =  (gEx `  G )
gexex.3  |-  O  =  ( od `  G
)
gexexlem.1  |-  ( ph  ->  G  e.  Abel )
gexexlem.2  |-  ( ph  ->  E  e.  NN )
gexexlem.3  |-  ( ph  ->  A  e.  X )
gexexlem.4  |-  ( (
ph  /\  y  e.  X )  ->  ( O `  y )  <_  ( O `  A
) )
Assertion
Ref Expression
gexexlem  |-  ( ph  ->  ( O `  A
)  =  E )
Distinct variable groups:    y, A    y, E    y, G    y, O    ph, y    y, X

Proof of Theorem gexexlem
Dummy variables  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexexlem.3 . . 3  |-  ( ph  ->  A  e.  X )
2 gexex.1 . . . 4  |-  X  =  ( Base `  G
)
3 gexex.3 . . . 4  |-  O  =  ( od `  G
)
42, 3odcl 16044 . . 3  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
51, 4syl 16 . 2  |-  ( ph  ->  ( O `  A
)  e.  NN0 )
6 gexexlem.2 . . 3  |-  ( ph  ->  E  e.  NN )
76nnnn0d 10641 . 2  |-  ( ph  ->  E  e.  NN0 )
8 gexexlem.1 . . . 4  |-  ( ph  ->  G  e.  Abel )
9 ablgrp 16287 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
108, 9syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
11 gexex.2 . . . 4  |-  E  =  (gEx `  G )
122, 11, 3gexod 16090 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( O `  A
)  ||  E )
1310, 1, 12syl2anc 661 . 2  |-  ( ph  ->  ( O `  A
)  ||  E )
148ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  G  e.  Abel )
1510ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  G  e.  Grp )
16 prmnn 13771 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  p  e.  NN )
1716adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  NN )
18 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  Prime )
196ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  E  e.  NN )
201ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  A  e.  X )
212, 11, 3gexnnod 16092 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  A  e.  X )  ->  ( O `  A )  e.  NN )
2215, 19, 20, 21syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  e.  NN )
2318, 22pccld 13922 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  A ) )  e. 
NN0 )
2417, 23nnexpcld 12034 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN )
2524nnzd 10751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  ZZ )
26 eqid 2443 . . . . . . . . . . . . . 14  |-  (.g `  G
)  =  (.g `  G
)
272, 26mulgcl 15649 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  ZZ  /\  A  e.  X )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )
2815, 25, 20, 27syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )
29 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  x  e.  X )
302, 11, 3gexnnod 16092 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  x  e.  X )  ->  ( O `  x )  e.  NN )
3115, 19, 29, 30syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  e.  NN )
32 pcdvds 13935 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( O `  x )  e.  NN )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) ) 
||  ( O `  x ) )
3318, 31, 32syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) ) 
||  ( O `  x ) )
3418, 31pccld 13922 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  e. 
NN0 )
3517, 34nnexpcld 12034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  NN )
36 nndivdvds 13546 . . . . . . . . . . . . . . . 16  |-  ( ( ( O `  x
)  e.  NN  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  NN )  -> 
( ( p ^
( p  pCnt  ( O `  x )
) )  ||  ( O `  x )  <->  ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  NN ) )
3731, 35, 36syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) ) 
||  ( O `  x )  <->  ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  e.  NN ) )
3833, 37mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  NN )
3938nnzd 10751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  ZZ )
402, 26mulgcl 15649 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ  /\  x  e.  X )  ->  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )
4115, 39, 29, 40syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )
422, 3, 26odmulg 16062 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  ZZ )  -> 
( O `  A
)  =  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  x.  ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
4315, 20, 25, 42syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  x.  ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
44 pcdvds 13935 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  ( O `  A )  e.  NN )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) ) 
||  ( O `  A ) )
4518, 22, 44syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) ) 
||  ( O `  A ) )
46 gcdeq 13741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  NN  /\  ( O `  A )  e.  NN )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  =  ( p ^ ( p  pCnt  ( O `  A ) ) )  <->  ( p ^ ( p  pCnt  ( O `  A ) ) )  ||  ( O `  A )
) )
4724, 22, 46syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  =  ( p ^ ( p  pCnt  ( O `  A ) ) )  <->  ( p ^ ( p  pCnt  ( O `  A ) ) )  ||  ( O `  A )
) )
4845, 47mpbird 232 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) )  gcd  ( O `  A ) )  =  ( p ^ (
p  pCnt  ( O `  A ) ) ) )
4948oveq1d 6111 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  gcd  ( O `  A )
)  x.  ( O `
 ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ) )  =  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  x.  ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ) ) )
5043, 49eqtrd 2475 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  =  ( ( p ^ ( p  pCnt  ( O `  A ) ) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) ) )
5150oveq1d 6111 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  =  ( ( ( p ^ ( p  pCnt  ( O `  A ) ) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
522, 11, 3gexnnod 16092 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A )  e.  X )  ->  ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) )  e.  NN )
5315, 19, 28, 52syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  e.  NN )
5453nncnd 10343 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  e.  CC )
5524nncnd 10343 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  CC )
5624nnne0d 10371 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  =/=  0 )
5754, 55, 56divcan3d 10117 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) )  x.  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ) )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  =  ( O `
 ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ) )
5851, 57eqtr2d 2476 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  =  ( ( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )
592, 11, 3gexnnod 16092 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  E  e.  NN  /\  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  ->  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  NN )
6015, 19, 41, 59syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  NN )
6160nncnd 10343 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  CC )
6235nncnd 10343 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  CC )
6338nncnd 10343 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  e.  CC )
6438nnne0d 10371 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =/=  0 )
6531nncnd 10343 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  e.  CC )
6635nnne0d 10371 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  =/=  0 )
6765, 62, 66divcan1d 10113 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( O `  x
) )
682, 3, 26odmulg 16062 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ )  ->  ( O `  x )  =  ( ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  x.  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
6915, 29, 39, 68syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  x )  =  ( ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  gcd  ( O `  x
) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
7035nnzd 10751 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  ZZ )
71 dvdsmul1 13559 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  ZZ  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  ZZ )  -> 
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  ||  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  x.  ( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
7239, 70, 71syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  ||  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
7372, 67breqtrd 4321 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  ||  ( O `  x ) )
74 gcdeq 13741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  e.  NN  /\  ( O `  x )  e.  NN )  -> 
( ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  gcd  ( O `  x
) )  =  ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <->  ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) )  ||  ( O `  x ) ) )
7538, 31, 74syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  =  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  <->  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  ||  ( O `
 x ) ) )
7673, 75mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  =  ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
7776oveq1d 6111 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  gcd  ( O `
 x ) )  x.  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) )  x.  ( O `
 ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) ) )
7867, 69, 773eqtrrd 2480 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( O `
 ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  x )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
7961, 62, 63, 64, 78mulcanad 9976 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  =  ( p ^ ( p  pCnt  ( O `  x ) ) ) )
8058, 79oveq12d 6114 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  gcd  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
81 nndivdvds 13546 . . . . . . . . . . . . . . . . 17  |-  ( ( ( O `  A
)  e.  NN  /\  ( p ^ (
p  pCnt  ( O `  A ) ) )  e.  NN )  -> 
( ( p ^
( p  pCnt  ( O `  A )
) )  ||  ( O `  A )  <->  ( ( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  NN ) )
8222, 24, 81syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  A ) ) ) 
||  ( O `  A )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  e.  NN ) )
8345, 82mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  NN )
8483nnzd 10751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  ZZ )
85 gcdcom 13709 . . . . . . . . . . . . . 14  |-  ( ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  e.  ZZ  /\  ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  ZZ )  -> 
( ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( ( p ^
( p  pCnt  ( O `  x )
) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) ) )
8684, 70, 85syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  gcd  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  =  ( ( p ^
( p  pCnt  ( O `  x )
) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) ) )
87 pcndvds2 13939 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( O `  A )  e.  NN )  ->  -.  p  ||  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
8818, 22, 87syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  -.  p  ||  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
89 coprm 13791 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  ZZ )  ->  ( -.  p  ||  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <->  ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9018, 84, 89syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( -.  p  ||  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <->  ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9188, 90mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  gcd  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) ) )  =  1 )
92 prmz 13772 . . . . . . . . . . . . . . . 16  |-  ( p  e.  Prime  ->  p  e.  ZZ )
9392adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  ZZ )
94 rpexp1i 13812 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  ZZ  /\  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  e.  ZZ  /\  ( p  pCnt  ( O `
 x ) )  e.  NN0 )  -> 
( ( p  gcd  ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )  =  1  ->  ( ( p ^ ( p  pCnt  ( O `  x ) ) )  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9593, 84, 34, 94syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p  gcd  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) ) )  =  1  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  gcd  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )  =  1 ) )
9691, 95mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  gcd  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) ) )  =  1 )
9780, 86, 963eqtrd 2479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  gcd  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  1 )
98 eqid 2443 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
993, 2, 98odadd 16337 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A )  e.  X  /\  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  /\  ( ( O `  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) )  gcd  ( O `  ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  1 )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
10014, 28, 41, 97, 99syl31anc 1221 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) ) )
10158, 79oveq12d 6114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) )  x.  ( O `  ( (
( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
102100, 101eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  =  ( ( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) )
1032, 98grpcl 15556 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A )  e.  X  /\  ( ( ( O `  x
)  /  ( p ^ ( p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x )  e.  X )  -> 
( ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X
)
10415, 28, 41, 103syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X
)
105 gexexlem.4 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X )  ->  ( O `  y )  <_  ( O `  A
) )
106105ralrimiva 2804 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  X  ( O `  y )  <_  ( O `  A ) )
107106ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  A. y  e.  X  ( O `  y )  <_  ( O `  A )
)
108 fveq2 5696 . . . . . . . . . . . . 13  |-  ( y  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) )  ->  ( O `  y )  =  ( O `  ( ( ( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) ) )
109108breq1d 4307 . . . . . . . . . . . 12  |-  ( y  =  ( ( ( p ^ ( p 
pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) )  ->  ( ( O `  y )  <_  ( O `  A
)  <->  ( O `  ( ( ( p ^ ( p  pCnt  ( O `  A ) ) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  <_ 
( O `  A
) ) )
110109rspcv 3074 . . . . . . . . . . 11  |-  ( ( ( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) )  e.  X  ->  ( A. y  e.  X  ( O `  y )  <_  ( O `  A )  ->  ( O `  (
( ( p ^
( p  pCnt  ( O `  A )
) ) (.g `  G
) A ) ( +g  `  G ) ( ( ( O `
 x )  / 
( p ^ (
p  pCnt  ( O `  x ) ) ) ) (.g `  G ) x ) ) )  <_ 
( O `  A
) ) )
111104, 107, 110sylc 60 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  ( (
( p ^ (
p  pCnt  ( O `  A ) ) ) (.g `  G ) A ) ( +g  `  G
) ( ( ( O `  x )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) (.g `  G ) x ) ) )  <_  ( O `  A )
)
112102, 111eqbrtrrd 4319 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <_ 
( O `  A
) )
11383nnred 10342 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  e.  RR )
11422nnred 10342 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  ( O `  A )  e.  RR )
11535nnrpd 11031 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+ )
116113, 114, 115lemuldivd 11077 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  x.  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  <_ 
( O `  A
)  <->  ( ( O `
 A )  / 
( p ^ (
p  pCnt  ( O `  A ) ) ) )  <_  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  x )
) ) ) ) )
117112, 116mpbid 210 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( O `  A
)  /  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) )
118 nnrp 11005 . . . . . . . . . 10  |-  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  NN  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+ )
119 nnrp 11005 . . . . . . . . . 10  |-  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN  ->  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+ )
120 nnrp 11005 . . . . . . . . . 10  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR+ )
121 rpregt0 11009 . . . . . . . . . . 11  |-  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR+  ->  ( ( p ^ ( p 
pCnt  ( O `  x ) ) )  e.  RR  /\  0  <  ( p ^ (
p  pCnt  ( O `  x ) ) ) ) )
122 rpregt0 11009 . . . . . . . . . . 11  |-  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+  ->  ( ( p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR  /\  0  <  ( p ^ (
p  pCnt  ( O `  A ) ) ) ) )
123 rpregt0 11009 . . . . . . . . . . 11  |-  ( ( O `  A )  e.  RR+  ->  ( ( O `  A )  e.  RR  /\  0  <  ( O `  A
) ) )
124 lediv2 10227 . . . . . . . . . . 11  |-  ( ( ( ( p ^
( p  pCnt  ( O `  x )
) )  e.  RR  /\  0  <  ( p ^ ( p  pCnt  ( O `  x ) ) ) )  /\  ( ( p ^
( p  pCnt  ( O `  A )
) )  e.  RR  /\  0  <  ( p ^ ( p  pCnt  ( O `  A ) ) ) )  /\  ( ( O `  A )  e.  RR  /\  0  <  ( O `
 A ) ) )  ->  ( (
p ^ ( p 
pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
125121, 122, 123, 124syl3an 1260 . . . . . . . . . 10  |-  ( ( ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  RR+  /\  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  RR+  /\  ( O `  A )  e.  RR+ )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
126118, 119, 120, 125syl3an 1260 . . . . . . . . 9  |-  ( ( ( p ^ (
p  pCnt  ( O `  x ) ) )  e.  NN  /\  (
p ^ ( p 
pCnt  ( O `  A ) ) )  e.  NN  /\  ( O `  A )  e.  NN )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
12735, 24, 22, 126syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p ^ (
p  pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) )  <->  ( ( O `  A )  /  ( p ^
( p  pCnt  ( O `  A )
) ) )  <_ 
( ( O `  A )  /  (
p ^ ( p 
pCnt  ( O `  x ) ) ) ) ) )
128117, 127mpbird 232 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p ^ ( p 
pCnt  ( O `  x ) ) )  <_  ( p ^
( p  pCnt  ( O `  A )
) ) )
12917nnred 10342 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  RR )
13034nn0zd 10750 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  e.  ZZ )
13123nn0zd 10750 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  A ) )  e.  ZZ )
132 prmuz2 13786 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
133132adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  p  e.  ( ZZ>= `  2 )
)
134 eluz2b2 10932 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
135134simprbi 464 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
136133, 135syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  1  <  p )
137129, 130, 131, 136leexp2d 12043 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
( p  pCnt  ( O `  x )
)  <_  ( p  pCnt  ( O `  A
) )  <->  ( p ^ ( p  pCnt  ( O `  x ) ) )  <_  (
p ^ ( p 
pCnt  ( O `  A ) ) ) ) )
138128, 137mpbird 232 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  p  e.  Prime )  ->  (
p  pCnt  ( O `  x ) )  <_ 
( p  pCnt  ( O `  A )
) )
139138ralrimiva 2804 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. p  e.  Prime  ( p  pCnt  ( O `  x ) )  <_  ( p  pCnt  ( O `  A
) ) )
1402, 3odcl 16044 . . . . . . . 8  |-  ( x  e.  X  ->  ( O `  x )  e.  NN0 )
141140adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  e.  NN0 )
142141nn0zd 10750 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  e.  ZZ )
1435nn0zd 10750 . . . . . . 7  |-  ( ph  ->  ( O `  A
)  e.  ZZ )
144143adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  A )  e.  ZZ )
145 pc2dvds 13950 . . . . . 6  |-  ( ( ( O `  x
)  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( ( O `  x )  ||  ( O `  A )  <->  A. p  e.  Prime  (
p  pCnt  ( O `  x ) )  <_ 
( p  pCnt  ( O `  A )
) ) )
146142, 144, 145syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( O `  x
)  ||  ( O `  A )  <->  A. p  e.  Prime  ( p  pCnt  ( O `  x ) )  <_  ( p  pCnt  ( O `  A
) ) ) )
147139, 146mpbird 232 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  ( O `  x )  ||  ( O `  A
) )
148147ralrimiva 2804 . . 3  |-  ( ph  ->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) )
1492, 11, 3gexdvds2 16089 . . . 4  |-  ( ( G  e.  Grp  /\  ( O `  A )  e.  ZZ )  -> 
( E  ||  ( O `  A )  <->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) ) )
15010, 143, 149syl2anc 661 . . 3  |-  ( ph  ->  ( E  ||  ( O `  A )  <->  A. x  e.  X  ( O `  x ) 
||  ( O `  A ) ) )
151148, 150mpbird 232 . 2  |-  ( ph  ->  E  ||  ( O `
 A ) )
152 dvdseq 13585 . 2  |-  ( ( ( ( O `  A )  e.  NN0  /\  E  e.  NN0 )  /\  ( ( O `  A )  ||  E  /\  E  ||  ( O `
 A ) ) )  ->  ( O `  A )  =  E )
1535, 7, 13, 151, 152syl22anc 1219 1  |-  ( ph  ->  ( O `  A
)  =  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   RRcr 9286   0cc0 9287   1c1 9288    x. cmul 9292    < clt 9423    <_ cle 9424    / cdiv 9998   NNcn 10327   2c2 10376   NN0cn0 10584   ZZcz 10651   ZZ>=cuz 10866   RR+crp 10996   ^cexp 11870    || cdivides 13540    gcd cgcd 13695   Primecprime 13768    pCnt cpc 13908   Basecbs 14179   +g cplusg 14243   Grpcgrp 15415  .gcmg 15419   odcod 16033  gExcgex 16034   Abelcabel 16283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-q 10959  df-rp 10997  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-gcd 13696  df-prm 13769  df-pc 13909  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-od 16037  df-gex 16038  df-cmn 16284  df-abl 16285
This theorem is referenced by:  gexex  16340
  Copyright terms: Public domain W3C validator