MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Unicode version

Theorem gexdvds 17171
Description: The only  N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
gexid.3  |-  .x.  =  (.g
`  G )
gexid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gexdvds  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Distinct variable groups:    x, E    x, G    x, N    x, X    x,  .0.    x,  .x.

Proof of Theorem gexdvds
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
2 gexcl.2 . . . . . 6  |-  E  =  (gEx `  G )
3 gexid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
4 gexid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
51, 2, 3, 4gexdvdsi 17170 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  N )  -> 
( N  .x.  x
)  =  .0.  )
653expia 1207 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( E  ||  N  ->  ( N  .x.  x
)  =  .0.  )
)
76ralrimdva 2850 . . 3  |-  ( G  e.  Grp  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
87adantr 466 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
9 noel 3771 . . . . . . 7  |-  -.  ( abs `  N )  e.  (/)
10 oveq1 6312 . . . . . . . . . . . 12  |-  ( y  =  ( abs `  N
)  ->  ( y  .x.  x )  =  ( ( abs `  N
)  .x.  x )
)
1110eqeq1d 2431 . . . . . . . . . . 11  |-  ( y  =  ( abs `  N
)  ->  ( (
y  .x.  x )  =  .0.  <->  ( ( abs `  N )  .x.  x
)  =  .0.  )
)
1211ralbidv 2871 . . . . . . . . . 10  |-  ( y  =  ( abs `  N
)  ->  ( A. x  e.  X  (
y  .x.  x )  =  .0.  <->  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
1312elrab 3235 . . . . . . . . 9  |-  ( ( abs `  N )  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  <->  ( ( abs `  N )  e.  NN  /\ 
A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
14 simprr 764 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )
1514eleq2d 2499 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  <->  ( abs `  N )  e.  (/) ) )
1613, 15syl5rbbr 263 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  (/)  <->  ( ( abs `  N )  e.  NN  /\  A. x  e.  X  ( ( abs `  N )  .x.  x )  =  .0.  ) ) )
1716rbaibd 918 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  (
( abs `  N
)  e.  (/)  <->  ( abs `  N )  e.  NN ) )
189, 17mtbii 303 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  -.  ( abs `  N )  e.  NN )
1918ex 435 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  -.  ( abs `  N )  e.  NN ) )
20 nn0abscl 13354 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
2120ad2antlr 731 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( abs `  N )  e. 
NN0 )
22 elnn0 10871 . . . . . . 7  |-  ( ( abs `  N )  e.  NN0  <->  ( ( abs `  N )  e.  NN  \/  ( abs `  N
)  =  0 ) )
2321, 22sylib 199 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  NN  \/  ( abs `  N )  =  0 ) )
2423ord 378 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( -.  ( abs `  N
)  e.  NN  ->  ( abs `  N )  =  0 ) )
2519, 24syld 45 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  ( abs `  N )  =  0 ) )
26 simpr 462 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  ( abs `  N )  =  N )
2726oveq1d 6320 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( abs `  N
)  .x.  x )  =  ( N  .x.  x ) )
2827eqeq1d 2431 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
29 oveq1 6312 . . . . . . . . 9  |-  ( ( abs `  N )  =  -u N  ->  (
( abs `  N
)  .x.  x )  =  ( -u N  .x.  x ) )
3029eqeq1d 2431 . . . . . . . 8  |-  ( ( abs `  N )  =  -u N  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( -u N  .x.  x )  =  .0.  ) )
31 eqid 2429 . . . . . . . . . . . 12  |-  ( invg `  G )  =  ( invg `  G )
321, 3, 31mulgneg 16727 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( -u N  .x.  x )  =  ( ( invg `  G ) `
 ( N  .x.  x ) ) )
33323expa 1205 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( -u N  .x.  x )  =  ( ( invg `  G ) `  ( N  .x.  x ) ) )
344, 31grpinvid 16668 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
3534ad2antrr 730 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( invg `  G ) `
 .0.  )  =  .0.  )
3635eqcomd 2437 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  =  ( ( invg `  G ) `  .0.  ) )
3733, 36eqeq12d 2451 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( ( invg `  G ) `
 ( N  .x.  x ) )  =  ( ( invg `  G ) `  .0.  ) ) )
38 simpll 758 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  G  e.  Grp )
391, 3mulgcl 16726 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( N  .x.  x )  e.  X )
40393expa 1205 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( N  .x.  x )  e.  X
)
411, 4grpidcl 16645 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .0.  e.  X )
4241ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  e.  X )
431, 31, 38, 40, 42grpinv11 16674 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( invg `  G ) `  ( N  .x.  x ) )  =  ( ( invg `  G ) `
 .0.  )  <->  ( N  .x.  x )  =  .0.  ) )
4437, 43bitrd 256 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
4530, 44sylan9bbr 705 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  = 
-u N )  -> 
( ( ( abs `  N )  .x.  x
)  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
46 zre 10941 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
4746ad2antlr 731 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  N  e.  RR )
4847absord 13456 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( abs `  N )  =  N  \/  ( abs `  N )  =  -u N ) )
4928, 45, 48mpjaodan 793 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
5049ralbidva 2868 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( ( abs `  N )  .x.  x
)  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
5150adantr 466 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
52 0dvds 14301 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
5352ad2antlr 731 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
0  ||  N  <->  N  = 
0 ) )
54 simprl 762 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  E  =  0 )
5554breq1d 4436 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( E  ||  N  <->  0  ||  N ) )
56 zcn 10942 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
5756ad2antlr 731 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  N  e.  CC )
5857abs00ad 13332 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
5953, 55, 583bitr4rd 289 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  E  ||  N ) )
6025, 51, 593imtr3d 270 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N ) )
61 elrabi 3232 . . . 4  |-  ( E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  E  e.  NN )
6246adantl 467 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  N  e.  RR )
63 nnrp 11311 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  RR+ )
64 modval 12095 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6562, 63, 64syl2an 479 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6665adantr 466 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6766oveq1d 6320 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E
) ) ) ) 
.x.  x ) )
68 simplll 766 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  G  e.  Grp )
69 simpllr 767 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  N  e.  ZZ )
70 nnz 10959 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  ZZ )
7170ad2antlr 731 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  e.  ZZ )
72 rerpdivcl 11330 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  /  E
)  e.  RR )
7362, 63, 72syl2an 479 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  /  E )  e.  RR )
7473flcld 12031 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7574adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7671, 75zmulcld 11046 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ )
77 simprl 762 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  x  e.  X
)
78 eqid 2429 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
791, 3, 78mulgsubdir 16740 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ  /\  x  e.  X ) )  -> 
( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x )  =  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) ) )
8068, 69, 76, 77, 79syl13anc 1266 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x
)  =  ( ( N  .x.  x ) ( -g `  G
) ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x ) ) )
81 simprr 764 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  .x.  x )  =  .0.  )
82 dvdsmul1 14302 . . . . . . . . . . . . 13  |-  ( ( E  e.  ZZ  /\  ( |_ `  ( N  /  E ) )  e.  ZZ )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )
8371, 75, 82syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E
) ) ) )
841, 2, 3, 4gexdvdsi 17170 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  ->  (
( E  x.  ( |_ `  ( N  /  E ) ) ) 
.x.  x )  =  .0.  )
8568, 77, 83, 84syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x )  =  .0.  )
8681, 85oveq12d 6323 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  (  .0.  ( -g `  G
)  .0.  ) )
87 simpll 758 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  G  e.  Grp )
8841ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  .0.  e.  X
)
891, 4, 78grpsubid 16689 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  .0.  e.  X )  -> 
(  .0.  ( -g `  G )  .0.  )  =  .0.  )
9087, 88, 89syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9190adantr 466 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9286, 91eqtrd 2470 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  .0.  )
9367, 80, 923eqtrd 2474 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  .0.  )
9493expr 618 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  x  e.  X )  ->  (
( N  .x.  x
)  =  .0.  ->  ( ( N  mod  E
)  .x.  x )  =  .0.  ) )
9594ralimdva 2840 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ) )
96 modlt 12104 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  <  E )
9762, 63, 96syl2an 479 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  <  E )
98 zmodcl 12113 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  E  e.  NN )  ->  ( N  mod  E
)  e.  NN0 )
9998adantll 718 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  NN0 )
10099nn0red 10926 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  RR )
101 nnre 10616 . . . . . . . . . 10  |-  ( E  e.  NN  ->  E  e.  RR )
102101adantl 467 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  RR )
103100, 102ltnled 9781 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  < 
E  <->  -.  E  <_  ( N  mod  E ) ) )
10497, 103mpbid 213 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  -.  E  <_  ( N  mod  E ) )
1051, 2, 3, 4gexlem2 17169 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  e.  ( 1 ... ( N  mod  E ) ) )
106 elfzle2 11801 . . . . . . . . . . . . 13  |-  ( E  e.  ( 1 ... ( N  mod  E
) )  ->  E  <_  ( N  mod  E
) )
107105, 106syl 17 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  <_  ( N  mod  E
) )
1081073expia 1207 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN )  -> 
( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  E  <_  ( N  mod  E ) ) )
109108impancom 441 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  (
( N  mod  E
)  e.  NN  ->  E  <_  ( N  mod  E ) ) )
110109con3d 138 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) )
111110ex 435 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) ) )
112111ad2antrr 730 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  ( -.  E  <_ 
( N  mod  E
)  ->  -.  ( N  mod  E )  e.  NN ) ) )
113104, 112mpid 42 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  -.  ( N  mod  E )  e.  NN ) )
114 elnn0 10871 . . . . . . . 8  |-  ( ( N  mod  E )  e.  NN0  <->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
11599, 114sylib 199 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
116115ord 378 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( -.  ( N  mod  E )  e.  NN  ->  ( N  mod  E )  =  0 ) )
11795, 113, 1163syld 57 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  ( N  mod  E
)  =  0 ) )
118 simpr 462 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  NN )
119 simplr 760 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  N  e.  ZZ )
120 dvdsval3 14287 . . . . . 6  |-  ( ( E  e.  NN  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  ( N  mod  E )  =  0 ) )
121118, 119, 120syl2anc 665 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( E  ||  N 
<->  ( N  mod  E
)  =  0 ) )
122117, 121sylibrd 237 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
12361, 122sylan2 476 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
)  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N
) )
124 eqid 2429 . . . . 5  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
1251, 3, 4, 2, 124gexlem1 17166 . . . 4  |-  ( G  e.  Grp  ->  (
( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ) )
126125adantr 466 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
) )
12760, 123, 126mpjaodan 793 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
1288, 127impbid 193 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   {crab 2786   (/)c0 3767   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859   -ucneg 9860    / cdiv 10268   NNcn 10609   NN0cn0 10869   ZZcz 10937   RR+crp 11302   ...cfz 11782   |_cfl 12023    mod cmo 12093   abscabs 13276    || cdvds 14283   Basecbs 15084   0gc0g 15297   Grpcgrp 16620   invgcminusg 16621   -gcsg 16622  .gcmg 16623  gExcgex 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-dvds 14284  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-gex 17121
This theorem is referenced by:  gexdvds2  17172
  Copyright terms: Public domain W3C validator