MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl Structured version   Unicode version

Theorem gexcl 17167
Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
Assertion
Ref Expression
gexcl  |-  ( G  e.  V  ->  E  e.  NN0 )

Proof of Theorem gexcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . 5  |-  X  =  ( Base `  G
)
2 eqid 2429 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
3 eqid 2429 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 gexcl.2 . . . . 5  |-  E  =  (gEx `  G )
5 eqid 2429 . . . . 5  |-  { y  e.  NN  |  A. x  e.  X  (
y (.g `  G ) x )  =  ( 0g
`  G ) }  =  { y  e.  NN  |  A. x  e.  X  ( y
(.g `  G ) x )  =  ( 0g
`  G ) }
61, 2, 3, 4, 5gexlem1 17166 . . . 4  |-  ( G  e.  V  ->  (
( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y
(.g `  G ) x )  =  ( 0g
`  G ) }  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  ( y (.g `  G
) x )  =  ( 0g `  G
) } ) )
7 simpl 458 . . . . 5  |-  ( ( E  =  0  /\ 
{ y  e.  NN  |  A. x  e.  X  ( y (.g `  G
) x )  =  ( 0g `  G
) }  =  (/) )  ->  E  =  0 )
8 elrabi 3232 . . . . 5  |-  ( E  e.  { y  e.  NN  |  A. x  e.  X  ( y
(.g `  G ) x )  =  ( 0g
`  G ) }  ->  E  e.  NN )
97, 8orim12i 518 . . . 4  |-  ( ( ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y
(.g `  G ) x )  =  ( 0g
`  G ) }  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  ( y (.g `  G
) x )  =  ( 0g `  G
) } )  -> 
( E  =  0  \/  E  e.  NN ) )
106, 9syl 17 . . 3  |-  ( G  e.  V  ->  ( E  =  0  \/  E  e.  NN )
)
1110orcomd 389 . 2  |-  ( G  e.  V  ->  ( E  e.  NN  \/  E  =  0 ) )
12 elnn0 10871 . 2  |-  ( E  e.  NN0  <->  ( E  e.  NN  \/  E  =  0 ) )
1311, 12sylibr 215 1  |-  ( G  e.  V  ->  E  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   {crab 2786   (/)c0 3767   ` cfv 5601  (class class class)co 6305   0cc0 9538   NNcn 10609   NN0cn0 10869   Basecbs 15084   0gc0g 15297  .gcmg 16623  gExcgex 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-gex 17121
This theorem is referenced by:  gexod  17173  cyggex2  17466
  Copyright terms: Public domain W3C validator