MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoserg Structured version   Unicode version

Theorem geoserg 13320
Description: The value of the finite geometric series  A ^ M  +  A ^ ( M  +  1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
geoserg.1  |-  ( ph  ->  A  e.  CC )
geoserg.2  |-  ( ph  ->  A  =/=  1 )
geoserg.3  |-  ( ph  ->  M  e.  NN0 )
geoserg.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
geoserg  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Distinct variable groups:    A, k    k, M    k, N    ph, k

Proof of Theorem geoserg
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzofi 11788 . . . . . 6  |-  ( M..^ N )  e.  Fin
21a1i 11 . . . . 5  |-  ( ph  ->  ( M..^ N )  e.  Fin )
3 ax-1cn 9332 . . . . . 6  |-  1  e.  CC
4 geoserg.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
5 subcl 9601 . . . . . 6  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
63, 4, 5sylancr 663 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
74adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  A  e.  CC )
8 geoserg.3 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
9 elfzouz 11549 . . . . . . 7  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( ZZ>= `  M )
)
10 eluznn0 10916 . . . . . . 7  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
118, 9, 10syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  k  e.  NN0 )
127, 11expcld 12000 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
k )  e.  CC )
132, 6, 12fsummulc1 13244 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A ) )  = 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) ) )
143a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  1  e.  CC )
1512, 14, 7subdid 9792 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( ( A ^
k )  x.  1 )  -  ( ( A ^ k )  x.  A ) ) )
1612mulid1d 9395 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  1 )  =  ( A ^ k ) )
177, 11expp1d 12001 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
1817eqcomd 2443 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  A )  =  ( A ^ ( k  +  1 ) ) )
1916, 18oveq12d 6104 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( ( A ^ k )  x.  1 )  -  ( ( A ^
k )  x.  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2015, 19eqtrd 2470 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( A ^ k )  x.  ( 1  -  A
) )  =  ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
2120sumeq2dv 13172 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  x.  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) ) )
22 oveq2 6094 . . . . 5  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
23 oveq2 6094 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
24 oveq2 6094 . . . . 5  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
25 oveq2 6094 . . . . 5  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
26 geoserg.4 . . . . 5  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
274adantr 465 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
28 elfzuz 11441 . . . . . . 7  |-  ( j  e.  ( M ... N )  ->  j  e.  ( ZZ>= `  M )
)
29 eluznn0 10916 . . . . . . 7  |-  ( ( M  e.  NN0  /\  j  e.  ( ZZ>= `  M ) )  -> 
j  e.  NN0 )
308, 28, 29syl2an 477 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  j  e.  NN0 )
3127, 30expcld 12000 . . . . 5  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  ( A ^ j )  e.  CC )
3222, 23, 24, 25, 26, 31fsumtscopo 13257 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( ( A ^ k
)  -  ( A ^ ( k  +  1 ) ) )  =  ( ( A ^ M )  -  ( A ^ N ) ) )
3313, 21, 323eqtrrd 2475 . . 3  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k
)  x.  ( 1  -  A ) ) )
344, 8expcld 12000 . . . . 5  |-  ( ph  ->  ( A ^ M
)  e.  CC )
35 eluznn0 10916 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN0 )
368, 26, 35syl2anc 661 . . . . . 6  |-  ( ph  ->  N  e.  NN0 )
374, 36expcld 12000 . . . . 5  |-  ( ph  ->  ( A ^ N
)  e.  CC )
3834, 37subcld 9711 . . . 4  |-  ( ph  ->  ( ( A ^ M )  -  ( A ^ N ) )  e.  CC )
392, 12fsumcl 13202 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  e.  CC )
40 geoserg.2 . . . . . 6  |-  ( ph  ->  A  =/=  1 )
4140necomd 2690 . . . . 5  |-  ( ph  ->  1  =/=  A )
42 subeq0 9627 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
433, 4, 42sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
4443necon3bid 2638 . . . . 5  |-  ( ph  ->  ( ( 1  -  A )  =/=  0  <->  1  =/=  A ) )
4541, 44mpbird 232 . . . 4  |-  ( ph  ->  ( 1  -  A
)  =/=  0 )
4638, 39, 6, 45divmul3d 10133 . . 3  |-  ( ph  ->  ( ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k )  <->  ( ( A ^ M )  -  ( A ^ N ) )  =  ( sum_ k  e.  ( M..^ N ) ( A ^ k )  x.  ( 1  -  A
) ) ) )
4733, 46mpbird 232 . 2  |-  ( ph  ->  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  sum_ k  e.  ( M..^ N ) ( A ^ k ) )
4847eqcomd 2443 1  |-  ( ph  -> 
sum_ k  e.  ( M..^ N ) ( A ^ k )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    - cmin 9587    / cdiv 9985   NN0cn0 10571   ZZ>=cuz 10853   ...cfz 11429  ..^cfzo 11540   ^cexp 11857   sum_csu 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156
This theorem is referenced by:  geoser  13321  rplogsumlem2  22714  rpvmasumlem  22716  dchrisum0flblem1  22737
  Copyright terms: Public domain W3C validator