MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoser Structured version   Unicode version

Theorem geoser 13329
Description: The value of the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^
( N  -  1 ). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Proof shortened by Mario Carneiro, 15-Jun-2014.)
Hypotheses
Ref Expression
geoser.1  |-  ( ph  ->  A  e.  CC )
geoser.2  |-  ( ph  ->  A  =/=  1 )
geoser.3  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
geoser  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, N    ph, k

Proof of Theorem geoser
StepHypRef Expression
1 geoser.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 geoser.2 . . 3  |-  ( ph  ->  A  =/=  1 )
3 0nn0 10594 . . . 4  |-  0  e.  NN0
43a1i 11 . . 3  |-  ( ph  ->  0  e.  NN0 )
5 geoser.3 . . . 4  |-  ( ph  ->  N  e.  NN0 )
6 nn0uz 10895 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
75, 6syl6eleq 2533 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
81, 2, 4, 7geoserg 13328 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0..^ N ) ( A ^ k )  =  ( ( ( A ^ 0 )  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
95nn0zd 10745 . . . 4  |-  ( ph  ->  N  e.  ZZ )
10 fzoval 11554 . . . 4  |-  ( N  e.  ZZ  ->  (
0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
119, 10syl 16 . . 3  |-  ( ph  ->  ( 0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
1211sumeq1d 13178 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0..^ N ) ( A ^ k )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )
131exp0d 12002 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  1 )
1413oveq1d 6106 . . 3  |-  ( ph  ->  ( ( A ^
0 )  -  ( A ^ N ) )  =  ( 1  -  ( A ^ N
) ) )
1514oveq1d 6106 . 2  |-  ( ph  ->  ( ( ( A ^ 0 )  -  ( A ^ N ) )  /  ( 1  -  A ) )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) ) )
168, 12, 153eqtr3d 2483 1  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    =/= wne 2606   ` cfv 5418  (class class class)co 6091   CCcc 9280   0cc0 9282   1c1 9283    - cmin 9595    / cdiv 9993   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   ...cfz 11437  ..^cfzo 11548   ^cexp 11865   sum_csu 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164
This theorem is referenced by:  geolim  13330  geolim2  13331  geo2sum  13333  geo2sum2  13334  3dvds  13596  1sgm2ppw  22539  mersenne  22566
  Copyright terms: Public domain W3C validator