MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Structured version   Unicode version

Theorem genpcl 9389
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcl.3  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h G f )  <Q 
( h G g ) ) )
genpcl.4  |-  ( x G y )  =  ( y G x )
genpcl.5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
Assertion
Ref Expression
genpcl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
Distinct variable groups:    x, y,
z, f, g, h, A    x, B, y, z, f, g, h, w, v    x, G   
y, w, v, G, z, f, g, h   
f, F, g    w, A, v    w, B, v   
x, F, y, w, v, h
Allowed substitution hint:    F( z)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . . 4  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
2 genp.2 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpn0 9384 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
(/)  C.  ( A F B ) )
41, 2genpss 9385 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  C_  Q. )
5 vex 3098 . . . . . 6  |-  x  e. 
_V
6 vex 3098 . . . . . 6  |-  y  e. 
_V
7 genpcl.3 . . . . . 6  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h G f )  <Q 
( h G g ) ) )
85, 6, 7caovord 6471 . . . . 5  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
9 genpcl.4 . . . . 5  |-  ( x G y )  =  ( y G x )
101, 2, 8, 9genpnnp 9386 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
11 dfpss2 3574 . . . 4  |-  ( ( A F B ) 
C.  Q.  <->  ( ( A F B )  C_  Q.  /\  -.  ( A F B )  =  Q. ) )
124, 10, 11sylanbrc 664 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  C.  Q. )
13 genpcl.5 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
141, 2, 13genpcd 9387 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
1514alrimdv 1708 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  A. x ( x 
<Q  f  ->  x  e.  ( A F B ) ) ) )
16 vex 3098 . . . . . . 7  |-  z  e. 
_V
17 vex 3098 . . . . . . 7  |-  w  e. 
_V
1816, 17, 7caovord 6471 . . . . . 6  |-  ( v  e.  Q.  ->  (
z  <Q  w  <->  ( v G z )  <Q 
( v G w ) ) )
1916, 17, 9caovcom 6457 . . . . . 6  |-  ( z G w )  =  ( w G z )
201, 2, 18, 19genpnmax 9388 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  E. x  e.  ( A F B ) f  <Q  x )
)
2115, 20jcad 533 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( A. x
( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
2221ralrimiv 2855 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. f  e.  ( A F B ) ( A. x ( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f 
<Q  x ) )
233, 12, 22jca31 534 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( (/)  C.  ( A F B )  /\  ( A F B ) 
C.  Q. )  /\  A. f  e.  ( A F B ) ( A. x ( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
24 elnp 9368 . 2  |-  ( ( A F B )  e.  P.  <->  ( ( (/)  C.  ( A F B )  /\  ( A F B )  C.  Q. )  /\  A. f  e.  ( A F B ) ( A. x
( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
2523, 24sylibr 212 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383    e. wcel 1804   {cab 2428   A.wral 2793   E.wrex 2794    C_ wss 3461    C. wpss 3462   (/)c0 3770   class class class wbr 4437  (class class class)co 6281    |-> cmpt2 6283   Q.cnq 9233    <Q cltq 9239   P.cnp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-omul 7137  df-er 7313  df-ni 9253  df-mi 9255  df-lti 9256  df-ltpq 9291  df-enq 9292  df-nq 9293  df-ltnq 9299  df-np 9362
This theorem is referenced by:  addclpr  9399  mulclpr  9401
  Copyright terms: Public domain W3C validator