Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen12 Structured version   Visualization version   Unicode version

Theorem gen12 36997
Description: Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 36997 is alrimivv 1774 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen12.1  |-  (. ph  ->.  ps
).
Assertion
Ref Expression
gen12  |-  (. ph  ->.  A. x A. y ps
).
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem gen12
StepHypRef Expression
1 gen12.1 . . . 4  |-  (. ph  ->.  ps
).
21in1 36941 . . 3  |-  ( ph  ->  ps )
32alrimivv 1774 . 2  |-  ( ph  ->  A. x A. y ps )
43dfvd1ir 36943 1  |-  (. ph  ->.  A. x A. y ps
).
Colors of variables: wff setvar class
Syntax hints:   A.wal 1442   (.wvd1 36939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758
This theorem depends on definitions:  df-bi 189  df-vd1 36940
This theorem is referenced by:  sspwtr  37209  pwtrVD  37220  pwtrrVD  37221  suctrALT2VD  37232  truniALTVD  37275  trintALTVD  37277  suctrALTcfVD  37320
  Copyright terms: Public domain W3C validator