Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gen12 Structured version   Unicode version

Theorem gen12 31653
Description: Virtual deduction generalizing rule for 2 quantifying variables and 1 virtual hypothesis. gen12 31653 is alrimivv 1687 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
gen12.1  |-  (. ph  ->.  ps
).
Assertion
Ref Expression
gen12  |-  (. ph  ->.  A. x A. y ps
).
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem gen12
StepHypRef Expression
1 gen12.1 . . . 4  |-  (. ph  ->.  ps
).
21in1 31597 . . 3  |-  ( ph  ->  ps )
32alrimivv 1687 . 2  |-  ( ph  ->  A. x A. y ps )
43dfvd1ir 31599 1  |-  (. ph  ->.  A. x A. y ps
).
Colors of variables: wff setvar class
Syntax hints:   A.wal 1368   (.wvd1 31595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671
This theorem depends on definitions:  df-bi 185  df-vd1 31596
This theorem is referenced by:  sspwtr  31868  pwtrVD  31873  pwtrrVD  31874  suctrALT2VD  31885  truniALTVD  31927  trintALTVD  31929  suctrALTcfVD  31972
  Copyright terms: Public domain W3C validator