MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0addcl Structured version   Unicode version

Theorem ge0addcl 11515
Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
ge0addcl  |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  ( 0 [,) +oo ) )  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)

Proof of Theorem ge0addcl
StepHypRef Expression
1 elrege0 11510 . 2  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
2 elrege0 11510 . 2  |-  ( B  e.  ( 0 [,) +oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
3 readdcl 9477 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
43ad2ant2r 746 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  RR )
5 addge0 9940 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
65an4s 822 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  0  <_  ( A  +  B ) )
7 elrege0 11510 . . 3  |-  ( ( A  +  B )  e.  ( 0 [,) +oo )  <->  ( ( A  +  B )  e.  RR  /\  0  <_ 
( A  +  B
) ) )
84, 6, 7sylanbrc 664 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)
91, 2, 8syl2anb 479 1  |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  ( 0 [,) +oo ) )  ->  ( A  +  B )  e.  ( 0 [,) +oo )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758   class class class wbr 4401  (class class class)co 6201   RRcr 9393   0cc0 9394    + caddc 9397   +oocpnf 9527    <_ cle 9531   [,)cico 11414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-ico 11418
This theorem is referenced by:  fsumge0  13377  rege0subm  17995  rge0srg  18008  ovolsf  21089  itg2addlem  21370  esumfsupre  26666  esumpfinvallem  26669  itg2addnc  28595  ftc1anclem3  28618  ftc1anclem6  28621  ftc1anclem7  28622  ftc1anclem8  28623
  Copyright terms: Public domain W3C validator