MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Unicode version

Theorem gchpwdom 9094
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  ->  ( A  ~<  B  <->  ~P A  ~<_  B ) )

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1009 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  A  e. GCH )
2 pwexg 4609 . . . . . . 7  |-  ( A  e. GCH  ->  ~P A  e. 
_V )
31, 2syl 17 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ~P A  e.  _V )
4 simpl3 1010 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  B  e. GCH )
5 cdadom3 8616 . . . . . 6  |-  ( ( ~P A  e.  _V  /\  B  e. GCH )  ->  ~P A  ~<_  ( ~P A  +c  B ) )
63, 4, 5syl2anc 665 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ~P A  ~<_  ( ~P A  +c  B
) )
7 domen2 7721 . . . . 5  |-  ( B 
~~  ( ~P A  +c  B )  ->  ( ~P A  ~<_  B  <->  ~P A  ~<_  ( ~P A  +c  B
) ) )
86, 7syl5ibrcom 225 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( B  ~~  ( ~P A  +c  B )  ->  ~P A  ~<_  B ) )
9 cdacomen 8609 . . . . . . 7  |-  ( B  +c  ~P A ) 
~~  ( ~P A  +c  B )
10 entr 7628 . . . . . . 7  |-  ( ( ( B  +c  ~P A )  ~~  ( ~P A  +c  B
)  /\  ( ~P A  +c  B )  ~~  ~P B )  ->  ( B  +c  ~P A ) 
~~  ~P B )
119, 10mpan 674 . . . . . 6  |-  ( ( ~P A  +c  B
)  ~~  ~P B  ->  ( B  +c  ~P A )  ~~  ~P B )
12 ensym 7625 . . . . . 6  |-  ( ( B  +c  ~P A
)  ~~  ~P B  ->  ~P B  ~~  ( B  +c  ~P A ) )
13 endom 7603 . . . . . 6  |-  ( ~P B  ~~  ( B  +c  ~P A )  ->  ~P B  ~<_  ( B  +c  ~P A
) )
1411, 12, 133syl 18 . . . . 5  |-  ( ( ~P A  +c  B
)  ~~  ~P B  ->  ~P B  ~<_  ( B  +c  ~P A ) )
15 domsdomtr 7713 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  ~<  B )  ->  om  ~<  B )
16153ad2antl1 1167 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  om  ~<  B )
17 sdomnsym 7703 . . . . . . . . . 10  |-  ( om 
~<  B  ->  -.  B  ~<  om )
1816, 17syl 17 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  -.  B  ~<  om )
19 isfinite 8157 . . . . . . . . 9  |-  ( B  e.  Fin  <->  B  ~<  om )
2018, 19sylnibr 306 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  -.  B  e.  Fin )
21 gchcdaidm 9092 . . . . . . . 8  |-  ( ( B  e. GCH  /\  -.  B  e.  Fin )  ->  ( B  +c  B
)  ~~  B )
224, 20, 21syl2anc 665 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( B  +c  B )  ~~  B
)
23 pwen 7751 . . . . . . 7  |-  ( ( B  +c  B ) 
~~  B  ->  ~P ( B  +c  B
)  ~~  ~P B
)
24 domen1 7720 . . . . . . 7  |-  ( ~P ( B  +c  B
)  ~~  ~P B  ->  ( ~P ( B  +c  B )  ~<_  ( B  +c  ~P A
)  <->  ~P B  ~<_  ( B  +c  ~P A ) ) )
2522, 23, 243syl 18 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P ( B  +c  B
)  ~<_  ( B  +c  ~P A )  <->  ~P B  ~<_  ( B  +c  ~P A
) ) )
26 pwcdadom 8644 . . . . . . 7  |-  ( ~P ( B  +c  B
)  ~<_  ( B  +c  ~P A )  ->  ~P B  ~<_  ~P A )
27 canth2g 7732 . . . . . . . . 9  |-  ( B  e. GCH  ->  B  ~<  ~P B
)
28 sdomdomtr 7711 . . . . . . . . . 10  |-  ( ( B  ~<  ~P B  /\  ~P B  ~<_  ~P A
)  ->  B  ~<  ~P A )
2928ex 435 . . . . . . . . 9  |-  ( B 
~<  ~P B  ->  ( ~P B  ~<_  ~P A  ->  B  ~<  ~P A
) )
304, 27, 293syl 18 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  ~<_  ~P A  ->  B  ~<  ~P A ) )
31 gchi 9048 . . . . . . . . . 10  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )
32313expia 1207 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  A  ~<  B )  ->  ( B  ~<  ~P A  ->  A  e.  Fin )
)
33323ad2antl2 1168 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( B  ~<  ~P A  ->  A  e.  Fin ) )
34 isfinite 8157 . . . . . . . . 9  |-  ( A  e.  Fin  <->  A  ~<  om )
35 simpl1 1008 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  om  ~<_  A )
36 domnsym 7704 . . . . . . . . . . 11  |-  ( om  ~<_  A  ->  -.  A  ~<  om )
3735, 36syl 17 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  -.  A  ~<  om )
3837pm2.21d 109 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( A  ~<  om  ->  ~P A  ~<_  B ) )
3934, 38syl5bi 220 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( A  e.  Fin  ->  ~P A  ~<_  B ) )
4030, 33, 393syld 57 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  ~<_  ~P A  ->  ~P A  ~<_  B ) )
4126, 40syl5 33 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P ( B  +c  B
)  ~<_  ( B  +c  ~P A )  ->  ~P A  ~<_  B ) )
4225, 41sylbird 238 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  ~<_  ( B  +c  ~P A )  ->  ~P A  ~<_  B ) )
4314, 42syl5 33 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ( ~P A  +c  B
)  ~~  ~P B  ->  ~P A  ~<_  B ) )
44 cdadom3 8616 . . . . . . 7  |-  ( ( B  e. GCH  /\  ~P A  e.  _V )  ->  B  ~<_  ( B  +c  ~P A ) )
454, 3, 44syl2anc 665 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  B  ~<_  ( B  +c  ~P A ) )
46 domentr 7635 . . . . . 6  |-  ( ( B  ~<_  ( B  +c  ~P A )  /\  ( B  +c  ~P A ) 
~~  ( ~P A  +c  B ) )  ->  B  ~<_  ( ~P A  +c  B ) )
4745, 9, 46sylancl 666 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  B  ~<_  ( ~P A  +c  B ) )
48 sdomdom 7604 . . . . . . . . 9  |-  ( A 
~<  B  ->  A  ~<_  B )
4948adantl 467 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  A  ~<_  B )
50 pwdom 7730 . . . . . . . 8  |-  ( A  ~<_  B  ->  ~P A  ~<_  ~P B )
51 cdadom1 8614 . . . . . . . 8  |-  ( ~P A  ~<_  ~P B  ->  ( ~P A  +c  B
)  ~<_  ( ~P B  +c  B ) )
5249, 50, 513syl 18 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P A  +c  B )  ~<_  ( ~P B  +c  B
) )
534, 27syl 17 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  B  ~<  ~P B )
54 sdomdom 7604 . . . . . . . 8  |-  ( B 
~<  ~P B  ->  B  ~<_  ~P B )
55 cdadom2 8615 . . . . . . . 8  |-  ( B  ~<_  ~P B  ->  ( ~P B  +c  B
)  ~<_  ( ~P B  +c  ~P B ) )
5653, 54, 553syl 18 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  +c  B )  ~<_  ( ~P B  +c  ~P B ) )
57 domtr 7629 . . . . . . 7  |-  ( ( ( ~P A  +c  B )  ~<_  ( ~P B  +c  B )  /\  ( ~P B  +c  B )  ~<_  ( ~P B  +c  ~P B
) )  ->  ( ~P A  +c  B
)  ~<_  ( ~P B  +c  ~P B ) )
5852, 56, 57syl2anc 665 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P A  +c  B )  ~<_  ( ~P B  +c  ~P B ) )
59 pwcda1 8622 . . . . . . . 8  |-  ( B  e. GCH  ->  ( ~P B  +c  ~P B )  ~~  ~P ( B  +c  1o ) )
604, 59syl 17 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  +c  ~P B ) 
~~  ~P ( B  +c  1o ) )
61 gchcda1 9080 . . . . . . . . 9  |-  ( ( B  e. GCH  /\  -.  B  e.  Fin )  ->  ( B  +c  1o )  ~~  B )
624, 20, 61syl2anc 665 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( B  +c  1o )  ~~  B
)
63 pwen 7751 . . . . . . . 8  |-  ( ( B  +c  1o ) 
~~  B  ->  ~P ( B  +c  1o )  ~~  ~P B )
6462, 63syl 17 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ~P ( B  +c  1o )  ~~  ~P B )
65 entr 7628 . . . . . . 7  |-  ( ( ( ~P B  +c  ~P B )  ~~  ~P ( B  +c  1o )  /\  ~P ( B  +c  1o )  ~~  ~P B )  ->  ( ~P B  +c  ~P B
)  ~~  ~P B
)
6660, 64, 65syl2anc 665 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P B  +c  ~P B ) 
~~  ~P B )
67 domentr 7635 . . . . . 6  |-  ( ( ( ~P A  +c  B )  ~<_  ( ~P B  +c  ~P B
)  /\  ( ~P B  +c  ~P B ) 
~~  ~P B )  -> 
( ~P A  +c  B )  ~<_  ~P B
)
6858, 66, 67syl2anc 665 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( ~P A  +c  B )  ~<_  ~P B )
69 gchor 9051 . . . . 5  |-  ( ( ( B  e. GCH  /\  -.  B  e.  Fin )  /\  ( B  ~<_  ( ~P A  +c  B
)  /\  ( ~P A  +c  B )  ~<_  ~P B ) )  -> 
( B  ~~  ( ~P A  +c  B
)  \/  ( ~P A  +c  B ) 
~~  ~P B ) )
704, 20, 47, 68, 69syl22anc 1265 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ( B  ~~  ( ~P A  +c  B )  \/  ( ~P A  +c  B
)  ~~  ~P B
) )
718, 43, 70mpjaod 382 . . 3  |-  ( ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  /\  A  ~<  B )  ->  ~P A  ~<_  B )
7271ex 435 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  ->  ( A  ~<  B  ->  ~P A  ~<_  B )
)
73 reldom 7583 . . . . 5  |-  Rel  ~<_
7473brrelexi 4895 . . . 4  |-  ( ~P A  ~<_  B  ->  ~P A  e.  _V )
75 pwexb 6616 . . . . 5  |-  ( A  e.  _V  <->  ~P A  e.  _V )
76 canth2g 7732 . . . . 5  |-  ( A  e.  _V  ->  A  ~<  ~P A )
7775, 76sylbir 216 . . . 4  |-  ( ~P A  e.  _V  ->  A 
~<  ~P A )
7874, 77syl 17 . . 3  |-  ( ~P A  ~<_  B  ->  A  ~<  ~P A )
79 sdomdomtr 7711 . . 3  |-  ( ( A  ~<  ~P A  /\  ~P A  ~<_  B )  ->  A  ~<  B )
8078, 79mpancom 673 . 2  |-  ( ~P A  ~<_  B  ->  A  ~<  B )
8172, 80impbid1 206 1  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  B  e. GCH )  ->  ( A  ~<  B  <->  ~P A  ~<_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    e. wcel 1870   _Vcvv 3087   ~Pcpw 3985   class class class wbr 4426  (class class class)co 6305   omcom 6706   1oc1o 7183    ~~ cen 7574    ~<_ cdom 7575    ~< csdm 7576   Fincfn 7577    +c ccda 8595  GCHcgch 9044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-seqom 7173  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-oexp 7196  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-oi 8025  df-har 8073  df-wdom 8074  df-cnf 8166  df-card 8372  df-cda 8596  df-fin4 8715  df-gch 9045
This theorem is referenced by:  gchaleph2  9096  gchina  9123
  Copyright terms: Public domain W3C validator