MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Visualization version   Unicode version

Theorem gchhar 9109
Description: A "local" form of gchac 9111. If  A and  ~P A are GCH-sets, then the Hartogs number of  A is  ~P A (so  ~P A and a fortiori 
A are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~~  ~P A
)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 8081 . . . 4  |-  (har `  A )  e.  On
2 simp3 1011 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  e. GCH )
3 cdadom3 8623 . . . 4  |-  ( ( (har `  A )  e.  On  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  ~P A ) )
41, 2, 3sylancr 670 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  ~P A ) )
5 domnsym 7703 . . . . . . . . 9  |-  ( om  ~<_  A  ->  -.  A  ~<  om )
653ad2ant1 1030 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  ~<  om )
7 isfinite 8162 . . . . . . . 8  |-  ( A  e.  Fin  <->  A  ~<  om )
86, 7sylnibr 307 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  e.  Fin )
9 pwfi 7874 . . . . . . 7  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
108, 9sylnib 306 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  ~P A  e.  Fin )
11 cdadom3 8623 . . . . . . 7  |-  ( ( ~P A  e. GCH  /\  (har `  A )  e.  On )  ->  ~P A  ~<_  ( ~P A  +c  (har `  A )
) )
122, 1, 11sylancl 669 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~<_  ( ~P A  +c  (har `  A ) ) )
13 ovex 6323 . . . . . . . 8  |-  ( ~P A  +c  (har `  A ) )  e. 
_V
1413canth2 7730 . . . . . . 7  |-  ( ~P A  +c  (har `  A ) )  ~<  ~P ( ~P A  +c  (har `  A ) )
15 pwcdaen 8620 . . . . . . . . 9  |-  ( ( ~P A  e. GCH  /\  (har `  A )  e.  On )  ->  ~P ( ~P A  +c  (har `  A ) )  ~~  ( ~P ~P A  X.  ~P (har `  A )
) )
162, 1, 15sylancl 669 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  (har `  A ) )  ~~  ( ~P ~P A  X.  ~P (har `  A )
) )
17 pwexg 4590 . . . . . . . . . . 11  |-  ( ~P A  e. GCH  ->  ~P ~P A  e.  _V )
182, 17syl 17 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ~P A  e.  _V )
19 simp2 1010 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  e. GCH )
20 harwdom 8110 . . . . . . . . . . 11  |-  ( A  e. GCH  ->  (har `  A
)  ~<_*  ~P ( A  X.  A ) )
21 wdompwdom 8098 . . . . . . . . . . 11  |-  ( (har
`  A )  ~<_*  ~P ( A  X.  A )  ->  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A ) )
2219, 20, 213syl 18 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A
) )
23 xpdom2g 7673 . . . . . . . . . 10  |-  ( ( ~P ~P A  e. 
_V  /\  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A
) )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
2418, 22, 23syl2anc 667 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
25 xpexg 6598 . . . . . . . . . . . . . 14  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  ( A  X.  A )  e.  _V )
2619, 19, 25syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  X.  A )  e.  _V )
27 pwexg 4590 . . . . . . . . . . . . 13  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
2826, 27syl 17 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  X.  A )  e. 
_V )
29 pwcdaen 8620 . . . . . . . . . . . 12  |-  ( ( ~P A  e. GCH  /\  ~P ( A  X.  A
)  e.  _V )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) )  ~~  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
302, 28, 29syl2anc 667 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
3130ensymd 7625 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ( ~P A  +c  ~P ( A  X.  A
) ) )
32 enrefg 7606 . . . . . . . . . . . . . 14  |-  ( ~P A  e. GCH  ->  ~P A  ~~  ~P A )
332, 32syl 17 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ~P A )
34 gchxpidm 9099 . . . . . . . . . . . . . . 15  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )
3519, 8, 34syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  X.  A )  ~~  A
)
36 pwen 7750 . . . . . . . . . . . . . 14  |-  ( ( A  X.  A ) 
~~  A  ->  ~P ( A  X.  A
)  ~~  ~P A
)
3735, 36syl 17 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  X.  A )  ~~  ~P A )
38 cdaen 8608 . . . . . . . . . . . . 13  |-  ( ( ~P A  ~~  ~P A  /\  ~P ( A  X.  A )  ~~  ~P A )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P A  +c  ~P A ) )
3933, 37, 38syl2anc 667 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P A  +c  ~P A ) )
40 gchcdaidm 9098 . . . . . . . . . . . . 13  |-  ( ( ~P A  e. GCH  /\  -.  ~P A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P A )
412, 10, 40syl2anc 667 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P A ) 
~~  ~P A )
42 entr 7626 . . . . . . . . . . . 12  |-  ( ( ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ( ~P A  +c  ~P A
)  /\  ( ~P A  +c  ~P A ) 
~~  ~P A )  -> 
( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P A )
4339, 41, 42syl2anc 667 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P A )
44 pwen 7750 . . . . . . . . . . 11  |-  ( ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P A  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P ~P A )
4543, 44syl 17 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P ~P A )
46 entr 7626 . . . . . . . . . 10  |-  ( ( ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) 
~~  ~P ( ~P A  +c  ~P ( A  X.  A ) )  /\  ~P ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P ~P A )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )
4731, 45, 46syl2anc 667 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )
48 domentr 7633 . . . . . . . . 9  |-  ( ( ( ~P ~P A  X.  ~P (har `  A
) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  /\  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ~P ~P A )
4924, 47, 48syl2anc 667 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ~P ~P A )
50 endomtr 7632 . . . . . . . 8  |-  ( ( ~P ( ~P A  +c  (har `  A )
)  ~~  ( ~P ~P A  X.  ~P (har `  A ) )  /\  ( ~P ~P A  X.  ~P (har `  A )
)  ~<_  ~P ~P A )  ->  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )
5116, 49, 50syl2anc 667 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )
52 sdomdomtr 7710 . . . . . . 7  |-  ( ( ( ~P A  +c  (har `  A ) ) 
~<  ~P ( ~P A  +c  (har `  A )
)  /\  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )  -> 
( ~P A  +c  (har `  A ) ) 
~<  ~P ~P A )
5314, 51, 52sylancr 670 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  (har `  A
) )  ~<  ~P ~P A )
54 gchen1 9055 . . . . . 6  |-  ( ( ( ~P A  e. GCH  /\  -.  ~P A  e. 
Fin )  /\  ( ~P A  ~<_  ( ~P A  +c  (har `  A
) )  /\  ( ~P A  +c  (har `  A ) )  ~<  ~P ~P A ) )  ->  ~P A  ~~  ( ~P A  +c  (har `  A ) ) )
552, 10, 12, 53, 54syl22anc 1270 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( ~P A  +c  (har `  A ) ) )
56 cdacomen 8616 . . . . 5  |-  ( ~P A  +c  (har `  A ) )  ~~  ( (har `  A )  +c  ~P A )
57 entr 7626 . . . . 5  |-  ( ( ~P A  ~~  ( ~P A  +c  (har `  A ) )  /\  ( ~P A  +c  (har `  A ) )  ~~  ( (har `  A )  +c  ~P A ) )  ->  ~P A  ~~  ( (har `  A )  +c  ~P A ) )
5855, 56, 57sylancl 669 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( (har `  A
)  +c  ~P A
) )
5958ensymd 7625 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( (har `  A )  +c  ~P A )  ~~  ~P A )
60 domentr 7633 . . 3  |-  ( ( (har `  A )  ~<_  ( (har `  A )  +c  ~P A )  /\  ( (har `  A )  +c  ~P A )  ~~  ~P A )  ->  (har `  A )  ~<_  ~P A
)
614, 59, 60syl2anc 667 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ~P A )
62 gchcdaidm 9098 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
6319, 8, 62syl2anc 667 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  A )  ~~  A
)
64 pwen 7750 . . . . 5  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
6563, 64syl 17 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ~P A )
66 cdadom3 8623 . . . . . . . 8  |-  ( ( A  e. GCH  /\  (har `  A )  e.  On )  ->  A  ~<_  ( A  +c  (har `  A
) ) )
6719, 1, 66sylancl 669 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  ~<_  ( A  +c  (har `  A
) ) )
68 harndom 8084 . . . . . . . 8  |-  -.  (har `  A )  ~<_  A
69 cdadom3 8623 . . . . . . . . . . 11  |-  ( ( (har `  A )  e.  On  /\  A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  A
) )
701, 19, 69sylancr 670 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  A
) )
71 cdacomen 8616 . . . . . . . . . 10  |-  ( (har
`  A )  +c  A )  ~~  ( A  +c  (har `  A
) )
72 domentr 7633 . . . . . . . . . 10  |-  ( ( (har `  A )  ~<_  ( (har `  A )  +c  A )  /\  (
(har `  A )  +c  A )  ~~  ( A  +c  (har `  A
) ) )  -> 
(har `  A )  ~<_  ( A  +c  (har `  A ) ) )
7370, 71, 72sylancl 669 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( A  +c  (har `  A ) ) )
74 domen2 7720 . . . . . . . . 9  |-  ( A 
~~  ( A  +c  (har `  A ) )  ->  ( (har `  A )  ~<_  A  <->  (har `  A
)  ~<_  ( A  +c  (har `  A ) ) ) )
7573, 74syl5ibrcom 226 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  ~~  ( A  +c  (har `  A ) )  -> 
(har `  A )  ~<_  A ) )
7668, 75mtoi 182 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  ~~  ( A  +c  (har `  A ) ) )
77 brsdom 7597 . . . . . . 7  |-  ( A 
~<  ( A  +c  (har `  A ) )  <->  ( A  ~<_  ( A  +c  (har `  A ) )  /\  -.  A  ~~  ( A  +c  (har `  A
) ) ) )
7867, 76, 77sylanbrc 671 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  ~<  ( A  +c  (har `  A ) ) )
79 canth2g 7731 . . . . . . . . 9  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
80 sdomdom 7602 . . . . . . . . 9  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
81 cdadom1 8621 . . . . . . . . 9  |-  ( A  ~<_  ~P A  ->  ( A  +c  (har `  A
) )  ~<_  ( ~P A  +c  (har `  A ) ) )
8219, 79, 80, 814syl 19 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ( ~P A  +c  (har `  A )
) )
83 cdadom2 8622 . . . . . . . . 9  |-  ( (har
`  A )  ~<_  ~P A  ->  ( ~P A  +c  (har `  A
) )  ~<_  ( ~P A  +c  ~P A
) )
8461, 83syl 17 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  (har `  A
) )  ~<_  ( ~P A  +c  ~P A
) )
85 domtr 7627 . . . . . . . 8  |-  ( ( ( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  (har `  A ) )  /\  ( ~P A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A ) )  -> 
( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A ) )
8682, 84, 85syl2anc 667 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ( ~P A  +c  ~P A ) )
87 domentr 7633 . . . . . . 7  |-  ( ( ( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A )  /\  ( ~P A  +c  ~P A
)  ~~  ~P A
)  ->  ( A  +c  (har `  A )
)  ~<_  ~P A )
8886, 41, 87syl2anc 667 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ~P A )
89 gchen2 9056 . . . . . 6  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  ( A  +c  (har `  A ) )  /\  ( A  +c  (har `  A ) )  ~<_  ~P A ) )  -> 
( A  +c  (har `  A ) )  ~~  ~P A )
9019, 8, 78, 88, 89syl22anc 1270 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~~  ~P A
)
9190ensymd 7625 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( A  +c  (har `  A ) ) )
92 entr 7626 . . . 4  |-  ( ( ~P ( A  +c  A )  ~~  ~P A  /\  ~P A  ~~  ( A  +c  (har `  A ) ) )  ->  ~P ( A  +c  A )  ~~  ( A  +c  (har `  A ) ) )
9365, 91, 92syl2anc 667 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ( A  +c  (har `  A ) ) )
94 endom 7601 . . 3  |-  ( ~P ( A  +c  A
)  ~~  ( A  +c  (har `  A )
)  ->  ~P ( A  +c  A )  ~<_  ( A  +c  (har `  A ) ) )
95 pwcdadom 8651 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  (har `  A ) )  ->  ~P A  ~<_  (har
`  A ) )
9693, 94, 953syl 18 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~<_  (har `  A ) )
97 sbth 7697 . 2  |-  ( ( (har `  A )  ~<_  ~P A  /\  ~P A  ~<_  (har `  A ) )  ->  (har `  A
)  ~~  ~P A
)
9861, 96, 97syl2anc 667 1  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~~  ~P A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 986    e. wcel 1889   _Vcvv 3047   ~Pcpw 3953   class class class wbr 4405    X. cxp 4835   Oncon0 5426   ` cfv 5585  (class class class)co 6295   omcom 6697    ~~ cen 7571    ~<_ cdom 7572    ~< csdm 7573   Fincfn 7574  harchar 8076    ~<_* cwdom 8077    +c ccda 8602  GCHcgch 9050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6920  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-seqom 7170  df-1o 7187  df-2o 7188  df-oadd 7191  df-omul 7192  df-oexp 7193  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7889  df-oi 8030  df-har 8078  df-wdom 8079  df-cnf 8172  df-card 8378  df-cda 8603  df-fin4 8722  df-gch 9051
This theorem is referenced by:  gchacg  9110
  Copyright terms: Public domain W3C validator