MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchhar Structured version   Unicode version

Theorem gchhar 9060
Description: A "local" form of gchac 9062. If  A and  ~P A are GCH-sets, then the Hartogs number of  A is  ~P A (so  ~P A and a fortiori 
A are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchhar  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~~  ~P A
)

Proof of Theorem gchhar
StepHypRef Expression
1 harcl 7990 . . . 4  |-  (har `  A )  e.  On
2 simp3 999 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  e. GCH )
3 cdadom3 8571 . . . 4  |-  ( ( (har `  A )  e.  On  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  ~P A ) )
41, 2, 3sylancr 663 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  ~P A ) )
5 domnsym 7645 . . . . . . . . 9  |-  ( om  ~<_  A  ->  -.  A  ~<  om )
653ad2ant1 1018 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  ~<  om )
7 isfinite 8072 . . . . . . . 8  |-  ( A  e.  Fin  <->  A  ~<  om )
86, 7sylnibr 305 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  e.  Fin )
9 pwfi 7817 . . . . . . 7  |-  ( A  e.  Fin  <->  ~P A  e.  Fin )
108, 9sylnib 304 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  ~P A  e.  Fin )
11 cdadom3 8571 . . . . . . 7  |-  ( ( ~P A  e. GCH  /\  (har `  A )  e.  On )  ->  ~P A  ~<_  ( ~P A  +c  (har `  A )
) )
122, 1, 11sylancl 662 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~<_  ( ~P A  +c  (har `  A ) ) )
13 ovex 6309 . . . . . . . 8  |-  ( ~P A  +c  (har `  A ) )  e. 
_V
1413canth2 7672 . . . . . . 7  |-  ( ~P A  +c  (har `  A ) )  ~<  ~P ( ~P A  +c  (har `  A ) )
15 pwcdaen 8568 . . . . . . . . 9  |-  ( ( ~P A  e. GCH  /\  (har `  A )  e.  On )  ->  ~P ( ~P A  +c  (har `  A ) )  ~~  ( ~P ~P A  X.  ~P (har `  A )
) )
162, 1, 15sylancl 662 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  (har `  A ) )  ~~  ( ~P ~P A  X.  ~P (har `  A )
) )
17 pwexg 4621 . . . . . . . . . . 11  |-  ( ~P A  e. GCH  ->  ~P ~P A  e.  _V )
182, 17syl 16 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ~P A  e.  _V )
19 simp2 998 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  e. GCH )
20 harwdom 8019 . . . . . . . . . . 11  |-  ( A  e. GCH  ->  (har `  A
)  ~<_*  ~P ( A  X.  A ) )
21 wdompwdom 8007 . . . . . . . . . . 11  |-  ( (har
`  A )  ~<_*  ~P ( A  X.  A )  ->  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A ) )
2219, 20, 213syl 20 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A
) )
23 xpdom2g 7615 . . . . . . . . . 10  |-  ( ( ~P ~P A  e. 
_V  /\  ~P (har `  A )  ~<_  ~P ~P ( A  X.  A
) )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
2418, 22, 23syl2anc 661 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
25 xpexg 6587 . . . . . . . . . . . . . 14  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  ( A  X.  A )  e.  _V )
2619, 19, 25syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  X.  A )  e.  _V )
27 pwexg 4621 . . . . . . . . . . . . 13  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  X.  A )  e. 
_V )
29 pwcdaen 8568 . . . . . . . . . . . 12  |-  ( ( ~P A  e. GCH  /\  ~P ( A  X.  A
)  e.  _V )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) )  ~~  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
302, 28, 29syl2anc 661 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) )
3130ensymd 7568 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ( ~P A  +c  ~P ( A  X.  A
) ) )
32 enrefg 7549 . . . . . . . . . . . . . 14  |-  ( ~P A  e. GCH  ->  ~P A  ~~  ~P A )
332, 32syl 16 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ~P A )
34 gchxpidm 9050 . . . . . . . . . . . . . . 15  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )
3519, 8, 34syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  X.  A )  ~~  A
)
36 pwen 7692 . . . . . . . . . . . . . 14  |-  ( ( A  X.  A ) 
~~  A  ->  ~P ( A  X.  A
)  ~~  ~P A
)
3735, 36syl 16 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  X.  A )  ~~  ~P A )
38 cdaen 8556 . . . . . . . . . . . . 13  |-  ( ( ~P A  ~~  ~P A  /\  ~P ( A  X.  A )  ~~  ~P A )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P A  +c  ~P A ) )
3933, 37, 38syl2anc 661 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ( ~P A  +c  ~P A ) )
40 gchcdaidm 9049 . . . . . . . . . . . . 13  |-  ( ( ~P A  e. GCH  /\  -.  ~P A  e.  Fin )  ->  ( ~P A  +c  ~P A )  ~~  ~P A )
412, 10, 40syl2anc 661 . . . . . . . . . . . 12  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P A ) 
~~  ~P A )
42 entr 7569 . . . . . . . . . . . 12  |-  ( ( ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ( ~P A  +c  ~P A
)  /\  ( ~P A  +c  ~P A ) 
~~  ~P A )  -> 
( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P A )
4339, 41, 42syl2anc 661 . . . . . . . . . . 11  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P A )
44 pwen 7692 . . . . . . . . . . 11  |-  ( ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P A  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P ~P A )
4543, 44syl 16 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  ~P ( A  X.  A ) ) 
~~  ~P ~P A )
46 entr 7569 . . . . . . . . . 10  |-  ( ( ( ~P ~P A  X.  ~P ~P ( A  X.  A ) ) 
~~  ~P ( ~P A  +c  ~P ( A  X.  A ) )  /\  ~P ( ~P A  +c  ~P ( A  X.  A
) )  ~~  ~P ~P A )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )
4731, 45, 46syl2anc 661 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )
48 domentr 7576 . . . . . . . . 9  |-  ( ( ( ~P ~P A  X.  ~P (har `  A
) )  ~<_  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  /\  ( ~P ~P A  X.  ~P ~P ( A  X.  A
) )  ~~  ~P ~P A )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ~P ~P A )
4924, 47, 48syl2anc 661 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P ~P A  X.  ~P (har `  A ) )  ~<_  ~P ~P A )
50 endomtr 7575 . . . . . . . 8  |-  ( ( ~P ( ~P A  +c  (har `  A )
)  ~~  ( ~P ~P A  X.  ~P (har `  A ) )  /\  ( ~P ~P A  X.  ~P (har `  A )
)  ~<_  ~P ~P A )  ->  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )
5116, 49, 50syl2anc 661 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )
52 sdomdomtr 7652 . . . . . . 7  |-  ( ( ( ~P A  +c  (har `  A ) ) 
~<  ~P ( ~P A  +c  (har `  A )
)  /\  ~P ( ~P A  +c  (har `  A ) )  ~<_  ~P ~P A )  -> 
( ~P A  +c  (har `  A ) ) 
~<  ~P ~P A )
5314, 51, 52sylancr 663 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  (har `  A
) )  ~<  ~P ~P A )
54 gchen1 9006 . . . . . 6  |-  ( ( ( ~P A  e. GCH  /\  -.  ~P A  e. 
Fin )  /\  ( ~P A  ~<_  ( ~P A  +c  (har `  A
) )  /\  ( ~P A  +c  (har `  A ) )  ~<  ~P ~P A ) )  ->  ~P A  ~~  ( ~P A  +c  (har `  A ) ) )
552, 10, 12, 53, 54syl22anc 1230 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( ~P A  +c  (har `  A ) ) )
56 cdacomen 8564 . . . . 5  |-  ( ~P A  +c  (har `  A ) )  ~~  ( (har `  A )  +c  ~P A )
57 entr 7569 . . . . 5  |-  ( ( ~P A  ~~  ( ~P A  +c  (har `  A ) )  /\  ( ~P A  +c  (har `  A ) )  ~~  ( (har `  A )  +c  ~P A ) )  ->  ~P A  ~~  ( (har `  A )  +c  ~P A ) )
5855, 56, 57sylancl 662 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( (har `  A
)  +c  ~P A
) )
5958ensymd 7568 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( (har `  A )  +c  ~P A )  ~~  ~P A )
60 domentr 7576 . . 3  |-  ( ( (har `  A )  ~<_  ( (har `  A )  +c  ~P A )  /\  ( (har `  A )  +c  ~P A )  ~~  ~P A )  ->  (har `  A )  ~<_  ~P A
)
614, 59, 60syl2anc 661 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ~P A )
62 gchcdaidm 9049 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
6319, 8, 62syl2anc 661 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  A )  ~~  A
)
64 pwen 7692 . . . . 5  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
6563, 64syl 16 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ~P A )
66 cdadom3 8571 . . . . . . . 8  |-  ( ( A  e. GCH  /\  (har `  A )  e.  On )  ->  A  ~<_  ( A  +c  (har `  A
) ) )
6719, 1, 66sylancl 662 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  ~<_  ( A  +c  (har `  A
) ) )
68 harndom 7993 . . . . . . . 8  |-  -.  (har `  A )  ~<_  A
69 cdadom3 8571 . . . . . . . . . . 11  |-  ( ( (har `  A )  e.  On  /\  A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  A
) )
701, 19, 69sylancr 663 . . . . . . . . . 10  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( (har `  A )  +c  A
) )
71 cdacomen 8564 . . . . . . . . . 10  |-  ( (har
`  A )  +c  A )  ~~  ( A  +c  (har `  A
) )
72 domentr 7576 . . . . . . . . . 10  |-  ( ( (har `  A )  ~<_  ( (har `  A )  +c  A )  /\  (
(har `  A )  +c  A )  ~~  ( A  +c  (har `  A
) ) )  -> 
(har `  A )  ~<_  ( A  +c  (har `  A ) ) )
7370, 71, 72sylancl 662 . . . . . . . . 9  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~<_  ( A  +c  (har `  A ) ) )
74 domen2 7662 . . . . . . . . 9  |-  ( A 
~~  ( A  +c  (har `  A ) )  ->  ( (har `  A )  ~<_  A  <->  (har `  A
)  ~<_  ( A  +c  (har `  A ) ) ) )
7573, 74syl5ibrcom 222 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  ~~  ( A  +c  (har `  A ) )  -> 
(har `  A )  ~<_  A ) )
7668, 75mtoi 178 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  -.  A  ~~  ( A  +c  (har `  A ) ) )
77 brsdom 7540 . . . . . . 7  |-  ( A 
~<  ( A  +c  (har `  A ) )  <->  ( A  ~<_  ( A  +c  (har `  A ) )  /\  -.  A  ~~  ( A  +c  (har `  A
) ) ) )
7867, 76, 77sylanbrc 664 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  A  ~<  ( A  +c  (har `  A ) ) )
79 canth2g 7673 . . . . . . . . 9  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
80 sdomdom 7545 . . . . . . . . 9  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
81 cdadom1 8569 . . . . . . . . 9  |-  ( A  ~<_  ~P A  ->  ( A  +c  (har `  A
) )  ~<_  ( ~P A  +c  (har `  A ) ) )
8219, 79, 80, 814syl 21 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ( ~P A  +c  (har `  A )
) )
83 cdadom2 8570 . . . . . . . . 9  |-  ( (har
`  A )  ~<_  ~P A  ->  ( ~P A  +c  (har `  A
) )  ~<_  ( ~P A  +c  ~P A
) )
8461, 83syl 16 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( ~P A  +c  (har `  A
) )  ~<_  ( ~P A  +c  ~P A
) )
85 domtr 7570 . . . . . . . 8  |-  ( ( ( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  (har `  A ) )  /\  ( ~P A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A ) )  -> 
( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A ) )
8682, 84, 85syl2anc 661 . . . . . . 7  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ( ~P A  +c  ~P A ) )
87 domentr 7576 . . . . . . 7  |-  ( ( ( A  +c  (har `  A ) )  ~<_  ( ~P A  +c  ~P A )  /\  ( ~P A  +c  ~P A
)  ~~  ~P A
)  ->  ( A  +c  (har `  A )
)  ~<_  ~P A )
8886, 41, 87syl2anc 661 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~<_  ~P A )
89 gchen2 9007 . . . . . 6  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  ( A  +c  (har `  A ) )  /\  ( A  +c  (har `  A ) )  ~<_  ~P A ) )  -> 
( A  +c  (har `  A ) )  ~~  ~P A )
9019, 8, 78, 88, 89syl22anc 1230 . . . . 5  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ( A  +c  (har `  A )
)  ~~  ~P A
)
9190ensymd 7568 . . . 4  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~~  ( A  +c  (har `  A ) ) )
92 entr 7569 . . . 4  |-  ( ( ~P ( A  +c  A )  ~~  ~P A  /\  ~P A  ~~  ( A  +c  (har `  A ) ) )  ->  ~P ( A  +c  A )  ~~  ( A  +c  (har `  A ) ) )
9365, 91, 92syl2anc 661 . . 3  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ( A  +c  (har `  A ) ) )
94 endom 7544 . . 3  |-  ( ~P ( A  +c  A
)  ~~  ( A  +c  (har `  A )
)  ->  ~P ( A  +c  A )  ~<_  ( A  +c  (har `  A ) ) )
95 pwcdadom 8599 . . 3  |-  ( ~P ( A  +c  A
)  ~<_  ( A  +c  (har `  A ) )  ->  ~P A  ~<_  (har
`  A ) )
9693, 94, 953syl 20 . 2  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  ~P A  ~<_  (har `  A ) )
97 sbth 7639 . 2  |-  ( ( (har `  A )  ~<_  ~P A  /\  ~P A  ~<_  (har `  A ) )  ->  (har `  A
)  ~~  ~P A
)
9861, 96, 97syl2anc 661 1  |-  ( ( om  ~<_  A  /\  A  e. GCH  /\  ~P A  e. GCH )  ->  (har `  A
)  ~~  ~P A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 974    e. wcel 1804   _Vcvv 3095   ~Pcpw 3997   class class class wbr 4437   Oncon0 4868    X. cxp 4987   ` cfv 5578  (class class class)co 6281   omcom 6685    ~~ cen 7515    ~<_ cdom 7516    ~< csdm 7517   Fincfn 7518  harchar 7985    ~<_* cwdom 7986    +c ccda 8550  GCHcgch 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-seqom 7115  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-oexp 7138  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-oi 7938  df-har 7987  df-wdom 7988  df-cnf 8082  df-card 8323  df-cda 8551  df-fin4 8670  df-gch 9002
This theorem is referenced by:  gchacg  9061
  Copyright terms: Public domain W3C validator