MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchen2 Structured version   Visualization version   Unicode version

Theorem gchen2 9051
Description: If  A  <  B  <_  ~P A, and  A is an infinite GCH-set, then  B  =  ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchen2  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  B  /\  B  ~<_  ~P A
) )  ->  B  ~~  ~P A )

Proof of Theorem gchen2
StepHypRef Expression
1 simprr 766 . 2  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  B  /\  B  ~<_  ~P A
) )  ->  B  ~<_  ~P A )
2 gchi 9049 . . . . . 6  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )
323expia 1210 . . . . 5  |-  ( ( A  e. GCH  /\  A  ~<  B )  ->  ( B  ~<  ~P A  ->  A  e.  Fin )
)
43con3dimp 443 . . . 4  |-  ( ( ( A  e. GCH  /\  A  ~<  B )  /\  -.  A  e.  Fin )  ->  -.  B  ~<  ~P A )
54an32s 813 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  A  ~<  B )  ->  -.  B  ~<  ~P A )
65adantrr 723 . 2  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  B  /\  B  ~<_  ~P A
) )  ->  -.  B  ~<  ~P A )
7 bren2 7600 . 2  |-  ( B 
~~  ~P A  <->  ( B  ~<_  ~P A  /\  -.  B  ~<  ~P A ) )
81, 6, 7sylanbrc 670 1  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<  B  /\  B  ~<_  ~P A
) )  ->  B  ~~  ~P A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    e. wcel 1887   ~Pcpw 3951   class class class wbr 4402    ~~ cen 7566    ~<_ cdom 7567    ~< csdm 7568   Fincfn 7569  GCHcgch 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-br 4403  df-opab 4462  df-xp 4840  df-rel 4841  df-f1o 5589  df-en 7570  df-dom 7571  df-sdom 7572  df-gch 9046
This theorem is referenced by:  gchhar  9104
  Copyright terms: Public domain W3C validator