MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Unicode version

Theorem gchaclem 8951
Description: Lemma for gchac 8954 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1  |-  ( ph  ->  om  ~<_  A )
gchaclem.3  |-  ( ph  ->  ~P C  e. GCH )
gchaclem.4  |-  ( ph  ->  ( A  ~<_  C  /\  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) ) )
Assertion
Ref Expression
gchaclem  |-  ( ph  ->  ( A  ~<_  ~P C  /\  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) ) )

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4  |-  ( ph  ->  ( A  ~<_  C  /\  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) ) )
21simpld 459 . . 3  |-  ( ph  ->  A  ~<_  C )
3 reldom 7421 . . . . . 6  |-  Rel  ~<_
43brrelex2i 4983 . . . . 5  |-  ( A  ~<_  C  ->  C  e.  _V )
52, 4syl 16 . . . 4  |-  ( ph  ->  C  e.  _V )
6 canth2g 7570 . . . 4  |-  ( C  e.  _V  ->  C  ~<  ~P C )
7 sdomdom 7442 . . . 4  |-  ( C 
~<  ~P C  ->  C  ~<_  ~P C )
85, 6, 73syl 20 . . 3  |-  ( ph  ->  C  ~<_  ~P C )
9 domtr 7467 . . 3  |-  ( ( A  ~<_  C  /\  C  ~<_  ~P C )  ->  A  ~<_  ~P C )
102, 8, 9syl2anc 661 . 2  |-  ( ph  ->  A  ~<_  ~P C )
11 gchaclem.3 . . . . . 6  |-  ( ph  ->  ~P C  e. GCH )
1211adantr 465 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ~P C  e. GCH )
13 gchaclem.1 . . . . . . . 8  |-  ( ph  ->  om  ~<_  A )
14 domtr 7467 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  C )  ->  om  ~<_  C )
1513, 2, 14syl2anc 661 . . . . . . 7  |-  ( ph  ->  om  ~<_  C )
1615adantr 465 . . . . . 6  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  om  ~<_  C )
17 pwcdaidm 8470 . . . . . 6  |-  ( om  ~<_  C  ->  ( ~P C  +c  ~P C ) 
~~  ~P C )
1816, 17syl 16 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  +c  ~P C
)  ~~  ~P C
)
19 simpr 461 . . . . 5  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  B  ~<_  ~P ~P C )
20 gchdomtri 8902 . . . . 5  |-  ( ( ~P C  e. GCH  /\  ( ~P C  +c  ~P C )  ~~  ~P C  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C ) )
2112, 18, 19, 20syl3anc 1219 . . . 4  |-  ( (
ph  /\  B  ~<_  ~P ~P C )  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C ) )
2221ex 434 . . 3  |-  ( ph  ->  ( B  ~<_  ~P ~P C  ->  ( ~P C  ~<_  B  \/  B  ~<_  ~P C
) ) )
23 pwdom 7568 . . . . 5  |-  ( A  ~<_  C  ->  ~P A  ~<_  ~P C )
24 domtr 7467 . . . . . 6  |-  ( ( ~P A  ~<_  ~P C  /\  ~P C  ~<_  B )  ->  ~P A  ~<_  B )
2524ex 434 . . . . 5  |-  ( ~P A  ~<_  ~P C  ->  ( ~P C  ~<_  B  ->  ~P A  ~<_  B ) )
262, 23, 253syl 20 . . . 4  |-  ( ph  ->  ( ~P C  ~<_  B  ->  ~P A  ~<_  B ) )
271simprd 463 . . . 4  |-  ( ph  ->  ( B  ~<_  ~P C  ->  ~P A  ~<_  B ) )
2826, 27jaod 380 . . 3  |-  ( ph  ->  ( ( ~P C  ~<_  B  \/  B  ~<_  ~P C
)  ->  ~P A  ~<_  B ) )
2922, 28syld 44 . 2  |-  ( ph  ->  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) )
3010, 29jca 532 1  |-  ( ph  ->  ( A  ~<_  ~P C  /\  ( B  ~<_  ~P ~P C  ->  ~P A  ~<_  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    e. wcel 1758   _Vcvv 3072   ~Pcpw 3963   class class class wbr 4395  (class class class)co 6195   omcom 6581    ~~ cen 7412    ~<_ cdom 7413    ~< csdm 7414    +c ccda 8442  GCHcgch 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-1o 7025  df-2o 7026  df-er 7206  df-map 7321  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-wdom 7880  df-card 8215  df-cda 8443  df-gch 8894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator