MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Visualization version   Unicode version

Theorem gasubg 16968
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1  |-  H  =  ( Gs  S )
Assertion
Ref Expression
gasubg  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )

Proof of Theorem gasubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 16959 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
2 gasubg.1 . . . 4  |-  H  =  ( Gs  S )
32subggrp 16832 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
41, 3anim12ci 571 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( H  e.  Grp  /\  Y  e. 
_V ) )
5 eqid 2453 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65gaf 16961 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( (
Base `  G )  X.  Y ) --> Y )
76adantr 467 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
8 simpr 463 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
95subgss 16830 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 17 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
11 xpss1 4946 . . . . . 6  |-  ( S 
C_  ( Base `  G
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
1210, 11syl 17 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
137, 12fssresd 5755 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
142subgbas 16833 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
158, 14syl 17 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
1615xpeq1d 4860 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  =  ( ( Base `  H
)  X.  Y ) )
1716feq2d 5720 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( S  X.  Y
) --> Y  <->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y ) )
1813, 17mpbid 214 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y )
198adantr 467 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  S  e.  (SubGrp `  G )
)
20 eqid 2453 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2120subg0cl 16837 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
2219, 21syl 17 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  e.  S )
23 simpr 463 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  x  e.  Y )
24 ovres 6441 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  S  /\  x  e.  Y )  ->  ( ( 0g `  G ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( ( 0g
`  G )  .(+)  x ) )
2522, 23, 24syl2anc 667 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  G
)  .(+)  x ) )
262, 20subg0 16835 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2719, 26syl 17 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2827oveq1d 6310 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x ) )
2920gagrpid 16960 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3029adantlr 722 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3125, 28, 303eqtr3d 2495 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x )
32 eqimss2 3487 . . . . . . . . . . 11  |-  ( S  =  ( Base `  H
)  ->  ( Base `  H )  C_  S
)
3315, 32syl 17 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( Base `  H )  C_  S
)
3433adantr 467 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( Base `  H )  C_  S )
3534sselda 3434 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  y  e.  ( Base `  H
) )  ->  y  e.  S )
3634sselda 3434 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  z  e.  ( Base `  H
) )  ->  z  e.  S )
3735, 36anim12dan 849 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( y  e.  S  /\  z  e.  S
) )
38 simprl 765 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  S )
397ad2antrr 733 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
409ad3antlr 738 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  S  C_  ( Base `  G ) )
41 simprr 767 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  S )
4240, 41sseldd 3435 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  ( Base `  G )
)
4323adantr 467 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  x  e.  Y )
4439, 42, 43fovrnd 6446 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z  .(+)  x )  e.  Y
)
45 ovres 6441 . . . . . . . . . 10  |-  ( ( y  e.  S  /\  ( z  .(+)  x )  e.  Y )  -> 
( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4638, 44, 45syl2anc 667 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z  .(+)  x )
)  =  ( y 
.(+)  ( z  .(+)  x ) ) )
47 ovres 6441 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  x  e.  Y )  ->  ( z (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( z  .(+)  x ) )
4841, 43, 47syl2anc 667 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z
(  .(+)  |`  ( S  X.  Y ) ) x )  =  ( z 
.(+)  x ) )
4948oveq2d 6311 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) ) )
50 simplll 769 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5140, 38sseldd 3435 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  ( Base `  G )
)
52 eqid 2453 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
535, 52gaass 16963 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
)  /\  x  e.  Y ) )  -> 
( ( y ( +g  `  G ) z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
5450, 51, 42, 43, 53syl13anc 1271 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) )
5546, 49, 543eqtr4d 2497 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( ( y ( +g  `  G ) z )  .(+)  x ) )
5652subgcl 16839 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S  /\  z  e.  S )  ->  (
y ( +g  `  G
) z )  e.  S )
57563expb 1210 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
5819, 57sylan 474 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
59 ovres 6441 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  S  /\  x  e.  Y )  ->  (
( y ( +g  `  G ) z ) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G ) z ) 
.(+)  x ) )
6058, 43, 59syl2anc 667 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G
) z )  .(+)  x ) )
612, 52ressplusg 15251 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6261ad3antlr 738 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6362oveqd 6312 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  =  ( y ( +g  `  H
) z ) )
6463oveq1d 6310 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x ) )
6555, 60, 643eqtr2rd 2494 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6637, 65syldan 473 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( ( y ( +g  `  H ) z ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( y ( 
.(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) ) )
6766ralrimivva 2811 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6831, 67jca 535 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( ( 0g `  H ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  x  /\  A. y  e.  ( Base `  H ) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
6968ralrimiva 2804 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7018, 69jca 535 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) )
71 eqid 2453 . . 3  |-  ( Base `  H )  =  (
Base `  H )
72 eqid 2453 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
73 eqid 2453 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
7471, 72, 73isga 16957 . 2  |-  ( ( 
.(+)  |`  ( S  X.  Y ) )  e.  ( H  GrpAct  Y )  <-> 
( ( H  e. 
Grp  /\  Y  e.  _V )  /\  (
(  .(+)  |`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) ) )
754, 70, 74sylanbrc 671 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739   _Vcvv 3047    C_ wss 3406    X. cxp 4835    |` cres 4839   -->wf 5581   ` cfv 5585  (class class class)co 6295   Basecbs 15133   ↾s cress 15134   +g cplusg 15202   0gc0g 15350   Grpcgrp 16681  SubGrpcsubg 16823    GrpAct cga 16955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-2 10675  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-0g 15352  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-grp 16685  df-subg 16826  df-ga 16956
This theorem is referenced by:  sylow3lem5  17295
  Copyright terms: Public domain W3C validator