MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Unicode version

Theorem gasubg 16212
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1  |-  H  =  ( Gs  S )
Assertion
Ref Expression
gasubg  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )

Proof of Theorem gasubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 16203 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
2 gasubg.1 . . . 4  |-  H  =  ( Gs  S )
32subggrp 16076 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
41, 3anim12ci 567 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( H  e.  Grp  /\  Y  e. 
_V ) )
5 eqid 2467 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65gaf 16205 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( (
Base `  G )  X.  Y ) --> Y )
76adantr 465 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
8 simpr 461 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
95subgss 16074 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
11 xpss1 5117 . . . . . 6  |-  ( S 
C_  ( Base `  G
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
1210, 11syl 16 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
13 fssres 5757 . . . . 5  |-  ( ( 
.(+)  : ( ( Base `  G )  X.  Y
) --> Y  /\  ( S  X.  Y )  C_  ( ( Base `  G
)  X.  Y ) )  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
147, 12, 13syl2anc 661 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
152subgbas 16077 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
168, 15syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
1716xpeq1d 5028 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  =  ( ( Base `  H
)  X.  Y ) )
1817feq2d 5724 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( S  X.  Y
) --> Y  <->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y ) )
1914, 18mpbid 210 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y )
208adantr 465 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  S  e.  (SubGrp `  G )
)
21 eqid 2467 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2221subg0cl 16081 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
2320, 22syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  e.  S )
24 simpr 461 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  x  e.  Y )
25 ovres 6437 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  S  /\  x  e.  Y )  ->  ( ( 0g `  G ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( ( 0g
`  G )  .(+)  x ) )
2623, 24, 25syl2anc 661 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  G
)  .(+)  x ) )
272, 21subg0 16079 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2820, 27syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2928oveq1d 6310 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x ) )
3021gagrpid 16204 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3130adantlr 714 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3226, 29, 313eqtr3d 2516 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x )
33 eqimss2 3562 . . . . . . . . . . 11  |-  ( S  =  ( Base `  H
)  ->  ( Base `  H )  C_  S
)
3416, 33syl 16 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( Base `  H )  C_  S
)
3534adantr 465 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( Base `  H )  C_  S )
3635sselda 3509 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  y  e.  ( Base `  H
) )  ->  y  e.  S )
3735sselda 3509 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  z  e.  ( Base `  H
) )  ->  z  e.  S )
3836, 37anim12dan 835 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( y  e.  S  /\  z  e.  S
) )
39 simprl 755 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  S )
407ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
419ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  S  C_  ( Base `  G ) )
42 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  S )
4341, 42sseldd 3510 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  ( Base `  G )
)
4424adantr 465 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  x  e.  Y )
4540, 43, 44fovrnd 6442 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z  .(+)  x )  e.  Y
)
46 ovres 6437 . . . . . . . . . 10  |-  ( ( y  e.  S  /\  ( z  .(+)  x )  e.  Y )  -> 
( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4739, 45, 46syl2anc 661 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z  .(+)  x )
)  =  ( y 
.(+)  ( z  .(+)  x ) ) )
48 ovres 6437 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  x  e.  Y )  ->  ( z (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( z  .(+)  x ) )
4942, 44, 48syl2anc 661 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z
(  .(+)  |`  ( S  X.  Y ) ) x )  =  ( z 
.(+)  x ) )
5049oveq2d 6311 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) ) )
51 simplll 757 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5241, 39sseldd 3510 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  ( Base `  G )
)
53 eqid 2467 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
545, 53gaass 16207 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
)  /\  x  e.  Y ) )  -> 
( ( y ( +g  `  G ) z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
5551, 52, 43, 44, 54syl13anc 1230 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) )
5647, 50, 553eqtr4d 2518 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( ( y ( +g  `  G ) z )  .(+)  x ) )
5753subgcl 16083 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S  /\  z  e.  S )  ->  (
y ( +g  `  G
) z )  e.  S )
58573expb 1197 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
5920, 58sylan 471 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
60 ovres 6437 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  S  /\  x  e.  Y )  ->  (
( y ( +g  `  G ) z ) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G ) z ) 
.(+)  x ) )
6159, 44, 60syl2anc 661 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G
) z )  .(+)  x ) )
622, 53ressplusg 14614 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6362ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6463oveqd 6312 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  =  ( y ( +g  `  H
) z ) )
6564oveq1d 6310 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x ) )
6656, 61, 653eqtr2rd 2515 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6738, 66syldan 470 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( ( y ( +g  `  H ) z ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( y ( 
.(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) ) )
6867ralrimivva 2888 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6932, 68jca 532 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( ( 0g `  H ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  x  /\  A. y  e.  ( Base `  H ) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7069ralrimiva 2881 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7119, 70jca 532 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) )
72 eqid 2467 . . 3  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2467 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2467 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
7572, 73, 74isga 16201 . 2  |-  ( ( 
.(+)  |`  ( S  X.  Y ) )  e.  ( H  GrpAct  Y )  <-> 
( ( H  e. 
Grp  /\  Y  e.  _V )  /\  (
(  .(+)  |`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) ) )
764, 71, 75sylanbrc 664 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    C_ wss 3481    X. cxp 5003    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295   Basecbs 14507   ↾s cress 14508   +g cplusg 14572   0gc0g 14712   Grpcgrp 15925  SubGrpcsubg 16067    GrpAct cga 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-subg 16070  df-ga 16200
This theorem is referenced by:  sylow3lem5  16524
  Copyright terms: Public domain W3C validator