MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Unicode version

Theorem gasubg 15819
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1  |-  H  =  ( Gs  S )
Assertion
Ref Expression
gasubg  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )

Proof of Theorem gasubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 15810 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
2 gasubg.1 . . . 4  |-  H  =  ( Gs  S )
32subggrp 15683 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
41, 3anim12ci 567 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( H  e.  Grp  /\  Y  e. 
_V ) )
5 eqid 2442 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65gaf 15812 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( (
Base `  G )  X.  Y ) --> Y )
76adantr 465 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
8 simpr 461 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
95subgss 15681 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
11 xpss1 4947 . . . . . 6  |-  ( S 
C_  ( Base `  G
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
1210, 11syl 16 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
13 fssres 5577 . . . . 5  |-  ( ( 
.(+)  : ( ( Base `  G )  X.  Y
) --> Y  /\  ( S  X.  Y )  C_  ( ( Base `  G
)  X.  Y ) )  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
147, 12, 13syl2anc 661 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
152subgbas 15684 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
168, 15syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
1716xpeq1d 4862 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  =  ( ( Base `  H
)  X.  Y ) )
1817feq2d 5546 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( S  X.  Y
) --> Y  <->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y ) )
1914, 18mpbid 210 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y )
208adantr 465 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  S  e.  (SubGrp `  G )
)
21 eqid 2442 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2221subg0cl 15688 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
2320, 22syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  e.  S )
24 simpr 461 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  x  e.  Y )
25 ovres 6229 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  S  /\  x  e.  Y )  ->  ( ( 0g `  G ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( ( 0g
`  G )  .(+)  x ) )
2623, 24, 25syl2anc 661 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  G
)  .(+)  x ) )
272, 21subg0 15686 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2820, 27syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2928oveq1d 6105 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x ) )
3021gagrpid 15811 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3130adantlr 714 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3226, 29, 313eqtr3d 2482 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x )
33 eqimss2 3408 . . . . . . . . . . 11  |-  ( S  =  ( Base `  H
)  ->  ( Base `  H )  C_  S
)
3416, 33syl 16 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( Base `  H )  C_  S
)
3534adantr 465 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( Base `  H )  C_  S )
3635sselda 3355 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  y  e.  ( Base `  H
) )  ->  y  e.  S )
3735sselda 3355 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  z  e.  ( Base `  H
) )  ->  z  e.  S )
3836, 37anim12dan 833 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( y  e.  S  /\  z  e.  S
) )
39 simprl 755 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  S )
407ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
419ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  S  C_  ( Base `  G ) )
42 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  S )
4341, 42sseldd 3356 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  ( Base `  G )
)
4424adantr 465 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  x  e.  Y )
4540, 43, 44fovrnd 6234 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z  .(+)  x )  e.  Y
)
46 ovres 6229 . . . . . . . . . 10  |-  ( ( y  e.  S  /\  ( z  .(+)  x )  e.  Y )  -> 
( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4739, 45, 46syl2anc 661 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z  .(+)  x )
)  =  ( y 
.(+)  ( z  .(+)  x ) ) )
48 ovres 6229 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  x  e.  Y )  ->  ( z (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( z  .(+)  x ) )
4942, 44, 48syl2anc 661 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z
(  .(+)  |`  ( S  X.  Y ) ) x )  =  ( z 
.(+)  x ) )
5049oveq2d 6106 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) ) )
51 simplll 757 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5241, 39sseldd 3356 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  ( Base `  G )
)
53 eqid 2442 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
545, 53gaass 15814 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
)  /\  x  e.  Y ) )  -> 
( ( y ( +g  `  G ) z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
5551, 52, 43, 44, 54syl13anc 1220 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) )
5647, 50, 553eqtr4d 2484 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( ( y ( +g  `  G ) z )  .(+)  x ) )
5753subgcl 15690 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S  /\  z  e.  S )  ->  (
y ( +g  `  G
) z )  e.  S )
58573expb 1188 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
5920, 58sylan 471 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
60 ovres 6229 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  S  /\  x  e.  Y )  ->  (
( y ( +g  `  G ) z ) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G ) z ) 
.(+)  x ) )
6159, 44, 60syl2anc 661 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G
) z )  .(+)  x ) )
622, 53ressplusg 14279 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6362ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6463oveqd 6107 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  =  ( y ( +g  `  H
) z ) )
6564oveq1d 6105 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x ) )
6656, 61, 653eqtr2rd 2481 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6738, 66syldan 470 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( ( y ( +g  `  H ) z ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( y ( 
.(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) ) )
6867ralrimivva 2807 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6932, 68jca 532 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( ( 0g `  H ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  x  /\  A. y  e.  ( Base `  H ) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7069ralrimiva 2798 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7119, 70jca 532 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) )
72 eqid 2442 . . 3  |-  ( Base `  H )  =  (
Base `  H )
73 eqid 2442 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
74 eqid 2442 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
7572, 73, 74isga 15808 . 2  |-  ( ( 
.(+)  |`  ( S  X.  Y ) )  e.  ( H  GrpAct  Y )  <-> 
( ( H  e. 
Grp  /\  Y  e.  _V )  /\  (
(  .(+)  |`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) ) )
764, 71, 75sylanbrc 664 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971    C_ wss 3327    X. cxp 4837    |` cres 4841   -->wf 5413   ` cfv 5417  (class class class)co 6090   Basecbs 14173   ↾s cress 14174   +g cplusg 14237   0gc0g 14377   Grpcgrp 15409  SubGrpcsubg 15674    GrpAct cga 15806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6831  df-rdg 6865  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-0g 14379  df-mnd 15414  df-grp 15544  df-subg 15677  df-ga 15807
This theorem is referenced by:  sylow3lem5  16129
  Copyright terms: Public domain W3C validator