MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gasubg Structured version   Unicode version

Theorem gasubg 16466
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gasubg.1  |-  H  =  ( Gs  S )
Assertion
Ref Expression
gasubg  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )

Proof of Theorem gasubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaset 16457 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
2 gasubg.1 . . . 4  |-  H  =  ( Gs  S )
32subggrp 16330 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
41, 3anim12ci 567 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( H  e.  Grp  /\  Y  e. 
_V ) )
5 eqid 2457 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65gaf 16459 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( (
Base `  G )  X.  Y ) --> Y )
76adantr 465 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
8 simpr 461 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
95subgss 16328 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
108, 9syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
11 xpss1 5120 . . . . . 6  |-  ( S 
C_  ( Base `  G
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
1210, 11syl 16 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  C_  (
( Base `  G )  X.  Y ) )
137, 12fssresd 5758 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( S  X.  Y ) --> Y )
142subgbas 16331 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
158, 14syl 16 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
1615xpeq1d 5031 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  Y )  =  ( ( Base `  H
)  X.  Y ) )
1716feq2d 5724 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( S  X.  Y
) --> Y  <->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y ) )
1813, 17mpbid 210 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) ) : ( ( Base `  H
)  X.  Y ) --> Y )
198adantr 465 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  S  e.  (SubGrp `  G )
)
20 eqid 2457 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2120subg0cl 16335 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
2219, 21syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  e.  S )
23 simpr 461 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  x  e.  Y )
24 ovres 6441 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  S  /\  x  e.  Y )  ->  ( ( 0g `  G ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( ( 0g
`  G )  .(+)  x ) )
2522, 23, 24syl2anc 661 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  G
)  .(+)  x ) )
262, 20subg0 16333 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2719, 26syl 16 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2827oveq1d 6311 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x ) )
2920gagrpid 16458 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3029adantlr 714 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  G
)  .(+)  x )  =  x )
3125, 28, 303eqtr3d 2506 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x )
32 eqimss2 3552 . . . . . . . . . . 11  |-  ( S  =  ( Base `  H
)  ->  ( Base `  H )  C_  S
)
3315, 32syl 16 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( Base `  H )  C_  S
)
3433adantr 465 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  ( Base `  H )  C_  S )
3534sselda 3499 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  y  e.  ( Base `  H
) )  ->  y  e.  S )
3634sselda 3499 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  z  e.  ( Base `  H
) )  ->  z  e.  S )
3735, 36anim12dan 837 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( y  e.  S  /\  z  e.  S
) )
38 simprl 756 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  S )
397ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  : ( ( Base `  G
)  X.  Y ) --> Y )
409ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  S  C_  ( Base `  G ) )
41 simprr 757 . . . . . . . . . . . 12  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  S )
4240, 41sseldd 3500 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  z  e.  ( Base `  G )
)
4323adantr 465 . . . . . . . . . . 11  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  x  e.  Y )
4439, 42, 43fovrnd 6446 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z  .(+)  x )  e.  Y
)
45 ovres 6441 . . . . . . . . . 10  |-  ( ( y  e.  S  /\  ( z  .(+)  x )  e.  Y )  -> 
( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4638, 44, 45syl2anc 661 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z  .(+)  x )
)  =  ( y 
.(+)  ( z  .(+)  x ) ) )
47 ovres 6441 . . . . . . . . . . 11  |-  ( ( z  e.  S  /\  x  e.  Y )  ->  ( z (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( z  .(+)  x ) )
4841, 43, 47syl2anc 661 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( z
(  .(+)  |`  ( S  X.  Y ) ) x )  =  ( z 
.(+)  x ) )
4948oveq2d 6312 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( y (  .(+)  |`  ( S  X.  Y
) ) ( z 
.(+)  x ) ) )
50 simplll 759 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5140, 38sseldd 3500 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  y  e.  ( Base `  G )
)
52 eqid 2457 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
535, 52gaass 16461 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
)  /\  x  e.  Y ) )  -> 
( ( y ( +g  `  G ) z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x )
) )
5450, 51, 42, 43, 53syl13anc 1230 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) )
5546, 49, 543eqtr4d 2508 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
(  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) )  =  ( ( y ( +g  `  G ) z )  .(+)  x ) )
5652subgcl 16337 . . . . . . . . . . 11  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S  /\  z  e.  S )  ->  (
y ( +g  `  G
) z )  e.  S )
57563expb 1197 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
5819, 57sylan 471 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  e.  S
)
59 ovres 6441 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  S  /\  x  e.  Y )  ->  (
( y ( +g  `  G ) z ) (  .(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G ) z ) 
.(+)  x ) )
6058, 43, 59syl2anc 661 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  G
) z )  .(+)  x ) )
612, 52ressplusg 14757 . . . . . . . . . . 11  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6261ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
6362oveqd 6313 . . . . . . . . 9  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( y
( +g  `  G ) z )  =  ( y ( +g  `  H
) z ) )
6463oveq1d 6311 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  G
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x ) )
6555, 60, 643eqtr2rd 2505 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  S  /\  z  e.  S )
)  ->  ( (
y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6637, 65syldan 470 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  /\  (
y  e.  ( Base `  H )  /\  z  e.  ( Base `  H
) ) )  -> 
( ( y ( +g  `  H ) z ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  ( y ( 
.(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y ) ) x ) ) )
6766ralrimivva 2878 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) )
6831, 67jca 532 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G
) )  /\  x  e.  Y )  ->  (
( ( 0g `  H ) (  .(+)  |`  ( S  X.  Y
) ) x )  =  x  /\  A. y  e.  ( Base `  H ) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
6968ralrimiva 2871 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) )
7018, 69jca 532 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  ( (  .(+) 
|`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) )
71 eqid 2457 . . 3  |-  ( Base `  H )  =  (
Base `  H )
72 eqid 2457 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
73 eqid 2457 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
7471, 72, 73isga 16455 . 2  |-  ( ( 
.(+)  |`  ( S  X.  Y ) )  e.  ( H  GrpAct  Y )  <-> 
( ( H  e. 
Grp  /\  Y  e.  _V )  /\  (
(  .(+)  |`  ( S  X.  Y ) ) : ( ( Base `  H
)  X.  Y ) --> Y  /\  A. x  e.  Y  ( (
( 0g `  H
) (  .(+)  |`  ( S  X.  Y ) ) x )  =  x  /\  A. y  e.  ( Base `  H
) A. z  e.  ( Base `  H
) ( ( y ( +g  `  H
) z ) ( 
.(+)  |`  ( S  X.  Y ) ) x )  =  ( y (  .(+)  |`  ( S  X.  Y ) ) ( z (  .(+)  |`  ( S  X.  Y
) ) x ) ) ) ) ) )
754, 70, 74sylanbrc 664 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  S  e.  (SubGrp `  G )
)  ->  (  .(+)  |`  ( S  X.  Y
) )  e.  ( H  GrpAct  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    C_ wss 3471    X. cxp 5006    |` cres 5010   -->wf 5590   ` cfv 5594  (class class class)co 6296   Basecbs 14643   ↾s cress 14644   +g cplusg 14711   0gc0g 14856   Grpcgrp 16179  SubGrpcsubg 16321    GrpAct cga 16453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-0g 14858  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-grp 16183  df-subg 16324  df-ga 16454
This theorem is referenced by:  sylow3lem5  16777
  Copyright terms: Public domain W3C validator