MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Unicode version

Theorem gastacl 15041
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1  |-  X  =  ( Base `  G
)
gasta.2  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
Assertion
Ref Expression
gastacl  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
Distinct variable groups:    u,  .(+)    u, A   
u, G    u, X
Allowed substitution hints:    H( u)    Y( u)

Proof of Theorem gastacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
2 ssrab2 3388 . . . 4  |-  { u  e.  X  |  (
u  .(+)  A )  =  A }  C_  X
31, 2eqsstri 3338 . . 3  |-  H  C_  X
43a1i 11 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  C_  X )
5 gagrp 15024 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
65adantr 452 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  G  e.  Grp )
7 gasta.1 . . . . . 6  |-  X  =  ( Base `  G
)
8 eqid 2404 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
97, 8grpidcl 14788 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
106, 9syl 16 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( 0g `  G )  e.  X )
118gagrpid 15026 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
( 0g `  G
)  .(+)  A )  =  A )
12 oveq1 6047 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
u  .(+)  A )  =  ( ( 0g `  G )  .(+)  A ) )
1312eqeq1d 2412 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  (
( u  .(+)  A )  =  A  <->  ( ( 0g `  G )  .(+)  A )  =  A ) )
1413, 1elrab2 3054 . . . 4  |-  ( ( 0g `  G )  e.  H  <->  ( ( 0g `  G )  e.  X  /\  ( ( 0g `  G ) 
.(+)  A )  =  A ) )
1510, 11, 14sylanbrc 646 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( 0g `  G )  e.  H )
16 ne0i 3594 . . 3  |-  ( ( 0g `  G )  e.  H  ->  H  =/=  (/) )
1715, 16syl 16 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  =/=  (/) )
18 simpll 731 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
1918, 5syl 16 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  G  e.  Grp )
20 simpr 448 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  x  e.  H )
21 oveq1 6047 . . . . . . . . . . . . 13  |-  ( u  =  x  ->  (
u  .(+)  A )  =  ( x  .(+)  A ) )
2221eqeq1d 2412 . . . . . . . . . . . 12  |-  ( u  =  x  ->  (
( u  .(+)  A )  =  A  <->  ( x  .(+) 
A )  =  A ) )
2322, 1elrab2 3054 . . . . . . . . . . 11  |-  ( x  e.  H  <->  ( x  e.  X  /\  (
x  .(+)  A )  =  A ) )
2420, 23sylib 189 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( x  e.  X  /\  (
x  .(+)  A )  =  A ) )
2524simpld 446 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  x  e.  X )
2625adantrr 698 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  x  e.  X )
27 simprr 734 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  y  e.  H )
28 oveq1 6047 . . . . . . . . . . . 12  |-  ( u  =  y  ->  (
u  .(+)  A )  =  ( y  .(+)  A ) )
2928eqeq1d 2412 . . . . . . . . . . 11  |-  ( u  =  y  ->  (
( u  .(+)  A )  =  A  <->  ( y  .(+)  A )  =  A ) )
3029, 1elrab2 3054 . . . . . . . . . 10  |-  ( y  e.  H  <->  ( y  e.  X  /\  (
y  .(+)  A )  =  A ) )
3127, 30sylib 189 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
y  e.  X  /\  ( y  .(+)  A )  =  A ) )
3231simpld 446 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  y  e.  X )
33 eqid 2404 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
347, 33grpcl 14773 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x ( +g  `  G ) y )  e.  X )
3519, 26, 32, 34syl3anc 1184 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x ( +g  `  G
) y )  e.  X )
36 simplr 732 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  A  e.  Y )
377, 33gaass 15029 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
x  e.  X  /\  y  e.  X  /\  A  e.  Y )
)  ->  ( (
x ( +g  `  G
) y )  .(+)  A )  =  ( x 
.(+)  ( y  .(+)  A ) ) )
3818, 26, 32, 36, 37syl13anc 1186 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
( x ( +g  `  G ) y ) 
.(+)  A )  =  ( x  .(+)  ( y  .(+)  A ) ) )
3931simprd 450 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
y  .(+)  A )  =  A )
4039oveq2d 6056 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x  .(+)  ( y  .(+)  A ) )  =  ( x  .(+)  A )
)
4124simprd 450 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( x  .(+) 
A )  =  A )
4241adantrr 698 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x  .(+)  A )  =  A )
4338, 40, 423eqtrd 2440 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
( x ( +g  `  G ) y ) 
.(+)  A )  =  A )
44 oveq1 6047 . . . . . . . . 9  |-  ( u  =  ( x ( +g  `  G ) y )  ->  (
u  .(+)  A )  =  ( ( x ( +g  `  G ) y )  .(+)  A ) )
4544eqeq1d 2412 . . . . . . . 8  |-  ( u  =  ( x ( +g  `  G ) y )  ->  (
( u  .(+)  A )  =  A  <->  ( (
x ( +g  `  G
) y )  .(+)  A )  =  A ) )
4645, 1elrab2 3054 . . . . . . 7  |-  ( ( x ( +g  `  G
) y )  e.  H  <->  ( ( x ( +g  `  G
) y )  e.  X  /\  ( ( x ( +g  `  G
) y )  .(+)  A )  =  A ) )
4735, 43, 46sylanbrc 646 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x ( +g  `  G
) y )  e.  H )
4847anassrs 630 . . . . 5  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  /\  y  e.  H )  ->  (
x ( +g  `  G
) y )  e.  H )
4948ralrimiva 2749 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  A. y  e.  H  ( x
( +g  `  G ) y )  e.  H
)
50 simpll 731 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5150, 5syl 16 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  G  e.  Grp )
52 eqid 2404 . . . . . . 7  |-  ( inv g `  G )  =  ( inv g `  G )
537, 52grpinvcl 14805 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( inv g `  G ) `  x
)  e.  X )
5451, 25, 53syl2anc 643 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( ( inv g `  G ) `
 x )  e.  X )
55 simplr 732 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  A  e.  Y )
567, 52gacan 15037 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
x  e.  X  /\  A  e.  Y  /\  A  e.  Y )
)  ->  ( (
x  .(+)  A )  =  A  <->  ( ( ( inv g `  G
) `  x )  .(+)  A )  =  A ) )
5750, 25, 55, 55, 56syl13anc 1186 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( (
x  .(+)  A )  =  A  <->  ( ( ( inv g `  G
) `  x )  .(+)  A )  =  A ) )
5841, 57mpbid 202 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( (
( inv g `  G ) `  x
)  .(+)  A )  =  A )
59 oveq1 6047 . . . . . . 7  |-  ( u  =  ( ( inv g `  G ) `
 x )  -> 
( u  .(+)  A )  =  ( ( ( inv g `  G
) `  x )  .(+)  A ) )
6059eqeq1d 2412 . . . . . 6  |-  ( u  =  ( ( inv g `  G ) `
 x )  -> 
( ( u  .(+)  A )  =  A  <->  ( (
( inv g `  G ) `  x
)  .(+)  A )  =  A ) )
6160, 1elrab2 3054 . . . . 5  |-  ( ( ( inv g `  G ) `  x
)  e.  H  <->  ( (
( inv g `  G ) `  x
)  e.  X  /\  ( ( ( inv g `  G ) `
 x )  .(+)  A )  =  A ) )
6254, 58, 61sylanbrc 646 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( ( inv g `  G ) `
 x )  e.  H )
6349, 62jca 519 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( A. y  e.  H  (
x ( +g  `  G
) y )  e.  H  /\  ( ( inv g `  G
) `  x )  e.  H ) )
6463ralrimiva 2749 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. x  e.  H  ( A. y  e.  H  (
x ( +g  `  G
) y )  e.  H  /\  ( ( inv g `  G
) `  x )  e.  H ) )
657, 33, 52issubg2 14914 . . 3  |-  ( G  e.  Grp  ->  ( H  e.  (SubGrp `  G
)  <->  ( H  C_  X  /\  H  =/=  (/)  /\  A. x  e.  H  ( A. y  e.  H  ( x ( +g  `  G ) y )  e.  H  /\  (
( inv g `  G ) `  x
)  e.  H ) ) ) )
666, 65syl 16 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( H  e.  (SubGrp `  G
)  <->  ( H  C_  X  /\  H  =/=  (/)  /\  A. x  e.  H  ( A. y  e.  H  ( x ( +g  `  G ) y )  e.  H  /\  (
( inv g `  G ) `  x
)  e.  H ) ) ) )
674, 17, 64, 66mpbir3and 1137 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   {crab 2670    C_ wss 3280   (/)c0 3588   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   0gc0g 13678   Grpcgrp 14640   inv gcminusg 14641  SubGrpcsubg 14893    GrpAct cga 15021
This theorem is referenced by:  gastacos  15042  orbstafun  15043  orbstaval  15044  orbsta  15045  orbsta2  15046  sylow1lem5  15191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-subg 14896  df-ga 15022
  Copyright terms: Public domain W3C validator