MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Unicode version

Theorem gapm 15829
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1  |-  X  =  ( Base `  G
)
gapm.2  |-  F  =  ( x  e.  Y  |->  ( A  .(+)  x ) )
Assertion
Ref Expression
gapm  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  ->  F : Y -1-1-onto-> Y )
Distinct variable groups:    x, A    x, G    x,  .(+)    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem gapm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2  |-  F  =  ( x  e.  Y  |->  ( A  .(+)  x ) )
2 gapm.1 . . . . 5  |-  X  =  ( Base `  G
)
32gaf 15818 . . . 4  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
43ad2antrr 725 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  .(+)  : ( X  X.  Y ) --> Y )
5 simplr 754 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  A  e.  X )
6 simpr 461 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  x  e.  Y )
74, 5, 6fovrnd 6240 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  ( A  .(+) 
x )  e.  Y
)
83ad2antrr 725 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  .(+)  : ( X  X.  Y ) --> Y )
9 gagrp 15815 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
109ad2antrr 725 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  G  e.  Grp )
11 simplr 754 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  A  e.  X )
12 eqid 2443 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
132, 12grpinvcl 15588 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
1410, 11, 13syl2anc 661 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  ( ( invg `  G ) `
 A )  e.  X )
15 simpr 461 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  y  e.  Y )
168, 14, 15fovrnd 6240 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  ( (
( invg `  G ) `  A
)  .(+)  y )  e.  Y )
17 simpll 753 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
18 simplr 754 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  A  e.  X )
19 simprl 755 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  x  e.  Y )
20 simprr 756 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  y  e.  Y )
212, 12gacan 15828 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  x  e.  Y  /\  y  e.  Y )
)  ->  ( ( A  .(+)  x )  =  y  <->  ( ( ( invg `  G
) `  A )  .(+)  y )  =  x ) )
2217, 18, 19, 20, 21syl13anc 1220 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
( A  .(+)  x )  =  y  <->  ( (
( invg `  G ) `  A
)  .(+)  y )  =  x ) )
2322bicomd 201 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
( ( ( invg `  G ) `
 A )  .(+)  y )  =  x  <->  ( A  .(+) 
x )  =  y ) )
24 eqcom 2445 . . 3  |-  ( x  =  ( ( ( invg `  G
) `  A )  .(+)  y )  <->  ( (
( invg `  G ) `  A
)  .(+)  y )  =  x )
25 eqcom 2445 . . 3  |-  ( y  =  ( A  .(+)  x )  <->  ( A  .(+)  x )  =  y )
2623, 24, 253bitr4g 288 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x  =  ( ( ( invg `  G ) `  A
)  .(+)  y )  <->  y  =  ( A  .(+)  x ) ) )
271, 7, 16, 26f1o2d 6317 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  ->  F : Y -1-1-onto-> Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    e. cmpt 4355    X. cxp 4843   -->wf 5419   -1-1-onto->wf1o 5422   ` cfv 5423  (class class class)co 6096   Basecbs 14179   Grpcgrp 15415   invgcminusg 15416    GrpAct cga 15812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-ga 15813
This theorem is referenced by:  galactghm  15913
  Copyright terms: Public domain W3C validator