MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Unicode version

Theorem gapm 15038
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1  |-  X  =  ( Base `  G
)
gapm.2  |-  F  =  ( x  e.  Y  |->  ( A  .(+)  x ) )
Assertion
Ref Expression
gapm  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  ->  F : Y -1-1-onto-> Y )
Distinct variable groups:    x, A    x, G    x,  .(+)    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem gapm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2  |-  F  =  ( x  e.  Y  |->  ( A  .(+)  x ) )
2 gapm.1 . . . . 5  |-  X  =  ( Base `  G
)
32gaf 15027 . . . 4  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
43ad2antrr 707 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  .(+)  : ( X  X.  Y ) --> Y )
5 simplr 732 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  A  e.  X )
6 simpr 448 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  x  e.  Y )
74, 5, 6fovrnd 6177 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  x  e.  Y
)  ->  ( A  .(+) 
x )  e.  Y
)
83ad2antrr 707 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  .(+)  : ( X  X.  Y ) --> Y )
9 gagrp 15024 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
109ad2antrr 707 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  G  e.  Grp )
11 simplr 732 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  A  e.  X )
12 eqid 2404 . . . . 5  |-  ( inv g `  G )  =  ( inv g `  G )
132, 12grpinvcl 14805 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( inv g `  G ) `  A
)  e.  X )
1410, 11, 13syl2anc 643 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  ( ( inv g `  G ) `
 A )  e.  X )
15 simpr 448 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  y  e.  Y )
168, 14, 15fovrnd 6177 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  y  e.  Y
)  ->  ( (
( inv g `  G ) `  A
)  .(+)  y )  e.  Y )
17 simpll 731 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
18 simplr 732 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  A  e.  X )
19 simprl 733 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  x  e.  Y )
20 simprr 734 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  y  e.  Y )
212, 12gacan 15037 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  x  e.  Y  /\  y  e.  Y )
)  ->  ( ( A  .(+)  x )  =  y  <->  ( ( ( inv g `  G
) `  A )  .(+)  y )  =  x ) )
2217, 18, 19, 20, 21syl13anc 1186 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
( A  .(+)  x )  =  y  <->  ( (
( inv g `  G ) `  A
)  .(+)  y )  =  x ) )
2322bicomd 193 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
( ( ( inv g `  G ) `
 A )  .(+)  y )  =  x  <->  ( A  .(+) 
x )  =  y ) )
24 eqcom 2406 . . 3  |-  ( x  =  ( ( ( inv g `  G
) `  A )  .(+)  y )  <->  ( (
( inv g `  G ) `  A
)  .(+)  y )  =  x )
25 eqcom 2406 . . 3  |-  ( y  =  ( A  .(+)  x )  <->  ( A  .(+)  x )  =  y )
2623, 24, 253bitr4g 280 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  /\  ( x  e.  Y  /\  y  e.  Y
) )  ->  (
x  =  ( ( ( inv g `  G ) `  A
)  .(+)  y )  <->  y  =  ( A  .(+)  x ) ) )
271, 7, 16, 26f1o2d 6255 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  X )  ->  F : Y -1-1-onto-> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    e. cmpt 4226    X. cxp 4835   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   Basecbs 13424   Grpcgrp 14640   inv gcminusg 14641    GrpAct cga 15021
This theorem is referenced by:  galactghm  15061
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-map 6979  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-ga 15022
  Copyright terms: Public domain W3C validator