MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorber Structured version   Unicode version

Theorem gaorber 15847
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaorb.1  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
gaorber.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gaorber  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
Distinct variable groups:    x, g,
y,  .(+)    g, X, x, y   
x, Y, y
Allowed substitution hints:    .~ ( x, y, g)    G( x, y, g)    Y( g)

Proof of Theorem gaorber
Dummy variables  h  f  k  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaorb.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
21relopabi 4986 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Rel  .~  )
4 simpr 461 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  u  .~  v )
51gaorb 15846 . . . . 5  |-  ( u  .~  v  <->  ( u  e.  Y  /\  v  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  v ) )
64, 5sylib 196 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  (
u  e.  Y  /\  v  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  v ) )
76simp2d 1001 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  v  e.  Y )
86simp1d 1000 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  u  e.  Y )
96simp3d 1002 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  E. h  e.  X  ( h  .(+) 
u )  =  v )
10 simpll 753 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  -> 
.(+)  e.  ( G  GrpAct  Y ) )
11 simpr 461 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  h  e.  X )
128adantr 465 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  u  e.  Y )
137adantr 465 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  v  e.  Y )
14 gaorber.2 . . . . . . . 8  |-  X  =  ( Base `  G
)
15 eqid 2443 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
1614, 15gacan 15844 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
h  e.  X  /\  u  e.  Y  /\  v  e.  Y )
)  ->  ( (
h  .(+)  u )  =  v  <->  ( ( ( invg `  G
) `  h )  .(+)  v )  =  u ) )
1710, 11, 12, 13, 16syl13anc 1220 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( h  .(+)  u )  =  v  <->  ( (
( invg `  G ) `  h
)  .(+)  v )  =  u ) )
18 gagrp 15831 . . . . . . . . 9  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
1918adantr 465 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  G  e.  Grp )
2014, 15grpinvcl 15604 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  h  e.  X )  ->  ( ( invg `  G ) `  h
)  e.  X )
2119, 20sylan 471 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( invg `  G ) `  h
)  e.  X )
22 oveq1 6119 . . . . . . . . . 10  |-  ( k  =  ( ( invg `  G ) `
 h )  -> 
( k  .(+)  v )  =  ( ( ( invg `  G
) `  h )  .(+)  v ) )
2322eqeq1d 2451 . . . . . . . . 9  |-  ( k  =  ( ( invg `  G ) `
 h )  -> 
( ( k  .(+)  v )  =  u  <->  ( (
( invg `  G ) `  h
)  .(+)  v )  =  u ) )
2423rspcev 3094 . . . . . . . 8  |-  ( ( ( ( invg `  G ) `  h
)  e.  X  /\  ( ( ( invg `  G ) `
 h )  .(+)  v )  =  u )  ->  E. k  e.  X  ( k  .(+)  v )  =  u )
2524ex 434 . . . . . . 7  |-  ( ( ( invg `  G ) `  h
)  e.  X  -> 
( ( ( ( invg `  G
) `  h )  .(+)  v )  =  u  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2621, 25syl 16 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( ( ( invg `  G
) `  h )  .(+)  v )  =  u  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2717, 26sylbid 215 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( h  .(+)  u )  =  v  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2827rexlimdva 2862 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  ( E. h  e.  X  ( h  .(+)  u )  =  v  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
299, 28mpd 15 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  E. k  e.  X  ( k  .(+)  v )  =  u )
301gaorb 15846 . . 3  |-  ( v  .~  u  <->  ( v  e.  Y  /\  u  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  u ) )
317, 8, 29, 30syl3anbrc 1172 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  v  .~  u )
328adantrr 716 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  u  e.  Y
)
33 simprr 756 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  v  .~  w
)
341gaorb 15846 . . . . 5  |-  ( v  .~  w  <->  ( v  e.  Y  /\  w  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
3533, 34sylib 196 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( v  e.  Y  /\  w  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
3635simp2d 1001 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  w  e.  Y
)
379adantrr 716 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. h  e.  X  ( h  .(+)  u )  =  v )
3835simp3d 1002 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. k  e.  X  ( k  .(+)  v )  =  w )
39 reeanv 2909 . . . . 5  |-  ( E. h  e.  X  E. k  e.  X  (
( h  .(+)  u )  =  v  /\  (
k  .(+)  v )  =  w )  <->  ( E. h  e.  X  (
h  .(+)  u )  =  v  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
4018ad2antrr 725 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  G  e.  Grp )
41 simprlr 762 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  k  e.  X
)
42 simprll 761 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  h  e.  X
)
43 eqid 2443 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4414, 43grpcl 15572 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  k  e.  X  /\  h  e.  X )  ->  ( k ( +g  `  G ) h )  e.  X )
4540, 41, 42, 44syl3anc 1218 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k ( +g  `  G ) h )  e.  X
)
46 simpll 753 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  .(+)  e.  ( G 
GrpAct  Y ) )
4732adantr 465 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  u  e.  Y
)
4814, 43gaass 15836 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
k  e.  X  /\  h  e.  X  /\  u  e.  Y )
)  ->  ( (
k ( +g  `  G
) h )  .(+)  u )  =  ( k 
.(+)  ( h  .(+)  u ) ) )
4946, 41, 42, 47, 48syl13anc 1220 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( ( k ( +g  `  G
) h )  .(+)  u )  =  ( k 
.(+)  ( h  .(+)  u ) ) )
50 simprrl 763 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( h  .(+)  u )  =  v )
5150oveq2d 6128 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k  .(+)  ( h  .(+)  u )
)  =  ( k 
.(+)  v ) )
52 simprrr 764 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k  .(+)  v )  =  w )
5349, 51, 523eqtrd 2479 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( ( k ( +g  `  G
) h )  .(+)  u )  =  w )
54 oveq1 6119 . . . . . . . . . 10  |-  ( f  =  ( k ( +g  `  G ) h )  ->  (
f  .(+)  u )  =  ( ( k ( +g  `  G ) h )  .(+)  u ) )
5554eqeq1d 2451 . . . . . . . . 9  |-  ( f  =  ( k ( +g  `  G ) h )  ->  (
( f  .(+)  u )  =  w  <->  ( (
k ( +g  `  G
) h )  .(+)  u )  =  w ) )
5655rspcev 3094 . . . . . . . 8  |-  ( ( ( k ( +g  `  G ) h )  e.  X  /\  (
( k ( +g  `  G ) h ) 
.(+)  u )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
5745, 53, 56syl2anc 661 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
5857expr 615 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
h  e.  X  /\  k  e.  X )
)  ->  ( (
( h  .(+)  u )  =  v  /\  (
k  .(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
5958rexlimdvva 2869 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( E. h  e.  X  E. k  e.  X  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6039, 59syl5bir 218 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( ( E. h  e.  X  ( h  .(+)  u )  =  v  /\  E. k  e.  X  ( k  .(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6137, 38, 60mp2and 679 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
621gaorb 15846 . . 3  |-  ( u  .~  w  <->  ( u  e.  Y  /\  w  e.  Y  /\  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6332, 36, 61, 62syl3anbrc 1172 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  u  .~  w
)
6418adantr 465 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  G  e.  Grp )
65 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
6614, 65grpidcl 15587 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
6764, 66syl 16 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  ( 0g `  G )  e.  X )
6865gagrpid 15833 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  (
( 0g `  G
)  .(+)  u )  =  u )
69 oveq1 6119 . . . . . . . . 9  |-  ( h  =  ( 0g `  G )  ->  (
h  .(+)  u )  =  ( ( 0g `  G )  .(+)  u ) )
7069eqeq1d 2451 . . . . . . . 8  |-  ( h  =  ( 0g `  G )  ->  (
( h  .(+)  u )  =  u  <->  ( ( 0g `  G )  .(+)  u )  =  u ) )
7170rspcev 3094 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  ( ( 0g `  G )  .(+)  u )  =  u )  ->  E. h  e.  X  ( h  .(+)  u )  =  u )
7267, 68, 71syl2anc 661 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  E. h  e.  X  ( h  .(+) 
u )  =  u )
7372ex 434 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  ->  E. h  e.  X  ( h  .(+) 
u )  =  u ) )
7473pm4.71rd 635 . . . 4  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  ( E. h  e.  X  ( h  .(+) 
u )  =  u  /\  u  e.  Y
) ) )
75 df-3an 967 . . . . 5  |-  ( ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  u )  <->  ( (
u  e.  Y  /\  u  e.  Y )  /\  E. h  e.  X  ( h  .(+)  u )  =  u ) )
76 anidm 644 . . . . . 6  |-  ( ( u  e.  Y  /\  u  e.  Y )  <->  u  e.  Y )
7776anbi2ci 696 . . . . 5  |-  ( ( ( u  e.  Y  /\  u  e.  Y
)  /\  E. h  e.  X  ( h  .(+) 
u )  =  u )  <->  ( E. h  e.  X  ( h  .(+) 
u )  =  u  /\  u  e.  Y
) )
7875, 77bitri 249 . . . 4  |-  ( ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  u )  <->  ( E. h  e.  X  (
h  .(+)  u )  =  u  /\  u  e.  Y ) )
7974, 78syl6bbr 263 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  u ) ) )
801gaorb 15846 . . 3  |-  ( u  .~  u  <->  ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  u ) )
8179, 80syl6bbr 263 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  u  .~  u
) )
823, 31, 63, 81iserd 7148 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2737    C_ wss 3349   {cpr 3900   class class class wbr 4313   {copab 4370   Rel wrel 4866   ` cfv 5439  (class class class)co 6112    Er wer 7119   Basecbs 14195   +g cplusg 14259   0gc0g 14399   Grpcgrp 15431   invgcminusg 15432    GrpAct cga 15828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-er 7122  df-map 7237  df-0g 14401  df-mnd 15436  df-grp 15566  df-minusg 15567  df-ga 15829
This theorem is referenced by:  sylow1lem3  16120  sylow1lem5  16122  sylow2alem1  16137  sylow2alem2  16138  sylow2a  16139  sylow3lem3  16149
  Copyright terms: Public domain W3C validator