MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzsplit Unicode version

Theorem fzouzsplit 11123
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )

Proof of Theorem fzouzsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelre 10453 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
2 eluzelre 10453 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  RR )
3 lelttric 9136 . . . . . . . 8  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B  <_  x  \/  x  <  B ) )
41, 2, 3syl2an 464 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( B  <_  x  \/  x  < 
B ) )
54orcomd 378 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  <  B  \/  B  <_  x ) )
6 id 20 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ( ZZ>= `  A )
)
7 eluzelz 10452 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
8 elfzo2 11098 . . . . . . . . . 10  |-  ( x  e.  ( A..^ B
)  <->  ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  <  B ) )
9 df-3an 938 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  < 
B )  <->  ( (
x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  /\  x  <  B ) )
108, 9bitri 241 . . . . . . . . 9  |-  ( x  e.  ( A..^ B
)  <->  ( ( x  e.  ( ZZ>= `  A
)  /\  B  e.  ZZ )  /\  x  <  B ) )
1110baib 872 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  ->  (
x  e.  ( A..^ B )  <->  x  <  B ) )
126, 7, 11syl2anr 465 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  <-> 
x  <  B )
)
13 eluzelz 10452 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ZZ )
14 eluz 10455 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  B )  <->  B  <_  x ) )
157, 13, 14syl2an 464 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( ZZ>= `  B )  <->  B  <_  x ) )
1612, 15orbi12d 691 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( (
x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B )
)  <->  ( x  < 
B  \/  B  <_  x ) ) )
175, 16mpbird 224 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  \/  x  e.  (
ZZ>= `  B ) ) )
1817ex 424 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  ( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) ) )
19 elun 3448 . . . 4  |-  ( x  e.  ( ( A..^ B )  u.  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) )
2018, 19syl6ibr 219 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  x  e.  ( ( A..^ B )  u.  ( ZZ>= `  B )
) ) )
2120ssrdv 3314 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  C_  (
( A..^ B )  u.  ( ZZ>= `  B
) ) )
22 elfzouz 11099 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ( ZZ>= `  A )
)
2322ssriv 3312 . . . 4  |-  ( A..^ B )  C_  ( ZZ>=
`  A )
2423a1i 11 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  C_  ( ZZ>=
`  A ) )
25 uzss 10462 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  B )  C_  ( ZZ>=
`  A ) )
2624, 25unssd 3483 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( ZZ>=
`  B ) ) 
C_  ( ZZ>= `  A
) )
2721, 26eqssd 3325 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    u. cun 3278    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945    < clt 9076    <_ cle 9077   ZZcz 10238   ZZ>=cuz 10444  ..^cfzo 11090
This theorem is referenced by:  bitsres  12940  mblfinlem  26143
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091
  Copyright terms: Public domain W3C validator