MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzdisj Structured version   Unicode version

Theorem fzouzdisj 11820
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzdisj  |-  ( ( A..^ B )  i^i  ( ZZ>= `  B )
)  =  (/)

Proof of Theorem fzouzdisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eq0 3795 . 2  |-  ( ( ( A..^ B )  i^i  ( ZZ>= `  B
) )  =  (/)  <->  A. x  -.  x  e.  ( ( A..^ B )  i^i  ( ZZ>= `  B
) ) )
2 elfzolt2 11796 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  <  B )
32adantr 465 . . . 4  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  x  <  B )
4 eluzle 11085 . . . . . 6  |-  ( x  e.  ( ZZ>= `  B
)  ->  B  <_  x )
54adantl 466 . . . . 5  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  B  <_  x )
6 eluzel2 11078 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  B
)  ->  B  e.  ZZ )
76adantl 466 . . . . . . 7  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  B  e.  ZZ )
87zred 10957 . . . . . 6  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  B  e.  RR )
9 eluzelre 11083 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  B
)  ->  x  e.  RR )
109adantl 466 . . . . . 6  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  x  e.  RR )
118, 10lenltd 9721 . . . . 5  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  ( B  <_  x  <->  -.  x  <  B ) )
125, 11mpbid 210 . . . 4  |-  ( ( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)  ->  -.  x  <  B )
133, 12pm2.65i 173 . . 3  |-  -.  (
x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B )
)
14 elin 3682 . . 3  |-  ( x  e.  ( ( A..^ B )  i^i  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  /\  x  e.  ( ZZ>= `  B ) ) )
1513, 14mtbir 299 . 2  |-  -.  x  e.  ( ( A..^ B
)  i^i  ( ZZ>= `  B ) )
161, 15mpgbir 1600 1  |-  ( ( A..^ B )  i^i  ( ZZ>= `  B )
)  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1374    e. wcel 1762    i^i cin 3470   (/)c0 3780   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   RRcr 9482    < clt 9619    <_ cle 9620   ZZcz 10855   ZZ>=cuz 11073  ..^cfzo 11783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-fzo 11784
This theorem is referenced by:  bitsres  13973  sseqfv1  27956  sseqfn  27957  sseqf  27959  sseqfv2  27961
  Copyright terms: Public domain W3C validator