MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoss1 Structured version   Unicode version

Theorem fzoss1 11811
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ N )  C_  ( M..^ N ) )

Proof of Theorem fzoss1
StepHypRef Expression
1 sseq1 3520 . 2  |-  ( ( K..^ N )  =  (/)  ->  ( ( K..^ N )  C_  ( M..^ N )  <->  (/)  C_  ( M..^ N ) ) )
2 fzon0 11804 . . . 4  |-  ( ( K..^ N )  =/=  (/) 
<->  K  e.  ( K..^ N ) )
3 elfzoel2 11787 . . . 4  |-  ( K  e.  ( K..^ N
)  ->  N  e.  ZZ )
42, 3sylbi 195 . . 3  |-  ( ( K..^ N )  =/=  (/)  ->  N  e.  ZZ )
5 fzss1 11713 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... ( N  -  1 ) )  C_  ( M ... ( N  - 
1 ) ) )
65adantr 465 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K ... ( N  - 
1 ) )  C_  ( M ... ( N  -  1 ) ) )
7 fzoval 11789 . . . . 5  |-  ( N  e.  ZZ  ->  ( K..^ N )  =  ( K ... ( N  -  1 ) ) )
87adantl 466 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K..^ N )  =  ( K ... ( N  -  1 ) ) )
9 fzoval 11789 . . . . 5  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
109adantl 466 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
116, 8, 103sstr4d 3542 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K..^ N )  C_  ( M..^ N ) )
124, 11sylan2 474 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K..^ N )  =/=  (/) )  -> 
( K..^ N ) 
C_  ( M..^ N
) )
13 0ss 3809 . . 3  |-  (/)  C_  ( M..^ N )
1413a1i 11 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  (/)  C_  ( M..^ N ) )
151, 12, 14pm2.61ne 2777 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ N )  C_  ( M..^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657    C_ wss 3471   (/)c0 3780   ` cfv 5581  (class class class)co 6277   1c1 9484    - cmin 9796   ZZcz 10855   ZZ>=cuz 11073   ...cfz 11663  ..^cfzo 11783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-fzo 11784
This theorem is referenced by:  fzo0ss1  11814  fzosplit  11817  zpnn0elfzo  11847  fzofzp1  11868  fzostep1  11881  injresinjlem  11884  injresinj  11885  ccatval2  12550  ccatass  12559  swrdval2  12599  splfv2a  12684  revccat  12692  fsumparts  13571  dfphi2  14154  efgsp1  16546  efgsres  16547  signsvfn  28167
  Copyright terms: Public domain W3C validator