MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitsnm1 Structured version   Unicode version

Theorem fzosplitsnm1 11724
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
fzosplitsnm1  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } ) )

Proof of Theorem fzosplitsnm1
StepHypRef Expression
1 eluzelz 10980 . . . . . 6  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  B  e.  ZZ )
21zcnd 10858 . . . . 5  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  B  e.  CC )
32adantl 466 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  e.  CC )
4 ax-1cn 9450 . . . 4  |-  1  e.  CC
5 npcan 9729 . . . . 5  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
65eqcomd 2462 . . . 4  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  B  =  ( ( B  -  1 )  +  1 ) )
73, 4, 6sylancl 662 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  =  ( ( B  -  1 )  +  1 ) )
87oveq2d 6215 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( A..^ (
( B  -  1 )  +  1 ) ) )
9 eluzp1m1 10994 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ( ZZ>= `  A ) )
101adantl 466 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  ->  B  e.  ZZ )
11 peano2zm 10798 . . . . 5  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
12 uzid 10985 . . . . 5  |-  ( ( B  -  1 )  e.  ZZ  ->  ( B  -  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) )
13 peano2uz 11018 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  ( B  -  1 ) )  ->  ( ( B  -  1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) )
1410, 11, 12, 134syl 21 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( B  - 
1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1
) ) )
15 elfzuzb 11563 . . . 4  |-  ( ( B  -  1 )  e.  ( A ... ( ( B  - 
1 )  +  1 ) )  <->  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  /\  ( ( B  -  1 )  +  1 )  e.  ( ZZ>= `  ( B  -  1 ) ) ) )
169, 14, 15sylanbrc 664 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ( A ... ( ( B  -  1 )  +  1 ) ) )
17 fzosplit 11698 . . 3  |-  ( ( B  -  1 )  e.  ( A ... ( ( B  - 
1 )  +  1 ) )  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  ( ( B  -  1 )..^ ( ( B  -  1 )  +  1 ) ) ) )
1816, 17syl 16 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ ( ( B  -  1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  (
( B  -  1 )..^ ( ( B  -  1 )  +  1 ) ) ) )
191, 11syl 16 . . . . 5  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( B  -  1 )  e.  ZZ )
2019adantl 466 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( B  -  1 )  e.  ZZ )
21 fzosn 11722 . . . 4  |-  ( ( B  -  1 )  e.  ZZ  ->  (
( B  -  1 )..^ ( ( B  -  1 )  +  1 ) )  =  { ( B  - 
1 ) } )
2220, 21syl 16 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( B  - 
1 )..^ ( ( B  -  1 )  +  1 ) )  =  { ( B  -  1 ) } )
2322uneq2d 3617 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( ( A..^ ( B  -  1 ) )  u.  ( ( B  -  1 )..^ ( ( B  - 
1 )  +  1 ) ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
248, 18, 233eqtrd 2499 1  |-  ( ( A  e.  ZZ  /\  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  {
( B  -  1 ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    u. cun 3433   {csn 3984   ` cfv 5525  (class class class)co 6199   CCcc 9390   1c1 9393    + caddc 9395    - cmin 9705   ZZcz 10756   ZZ>=cuz 10971   ...cfz 11553  ..^cfzo 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-n0 10690  df-z 10757  df-uz 10972  df-fz 11554  df-fzo 11665
This theorem is referenced by:  wrdeqswrdlsw  12460  elfzonlteqm1  30372
  Copyright terms: Public domain W3C validator