MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitsn Structured version   Unicode version

Theorem fzosplitsn 11892
Description: Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzosplitsn  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )

Proof of Theorem fzosplitsn
StepHypRef Expression
1 id 22 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( ZZ>= `  A )
)
2 eluzelz 11094 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 uzid 11099 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  ( ZZ>= `  B )
)
4 peano2uz 11138 . . . . 5  |-  ( B  e.  ( ZZ>= `  B
)  ->  ( B  +  1 )  e.  ( ZZ>= `  B )
)
52, 3, 43syl 20 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  1 )  e.  ( ZZ>= `  B )
)
6 elfzuzb 11686 . . . 4  |-  ( B  e.  ( A ... ( B  +  1
) )  <->  ( B  e.  ( ZZ>= `  A )  /\  ( B  +  1 )  e.  ( ZZ>= `  B ) ) )
71, 5, 6sylanbrc 664 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ( A ... ( B  +  1 ) ) )
8 fzosplit 11832 . . 3  |-  ( B  e.  ( A ... ( B  +  1
) )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) ) )
97, 8syl 16 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) ) )
10 fzosn 11860 . . . 4  |-  ( B  e.  ZZ  ->  ( B..^ ( B  +  1 ) )  =  { B } )
112, 10syl 16 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B..^ ( B  +  1
) )  =  { B } )
1211uneq2d 3640 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( B..^ ( B  +  1 ) ) )  =  ( ( A..^ B
)  u.  { B } ) )
139, 12eqtrd 2482 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1381    e. wcel 1802    u. cun 3456   {csn 4010   ` cfv 5574  (class class class)co 6277   1c1 9491    + caddc 9493   ZZcz 10865   ZZ>=cuz 11085   ...cfz 11676  ..^cfzo 11798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11086  df-fz 11677  df-fzo 11799
This theorem is referenced by:  fzosplitprm1  11893  fzosplitsni  11894  fzisfzounsn  11895  cats1un  12675  bitsinv1  13964  bitsinvp1  13971  gsmsymgrfixlem1  16321  gsmsymgreqlem2  16325  efgsp1  16624  pgpfaclem1  17000  clwlkisclwwlklem2a1  24644  clwwlkel  24658  wwlkext2clwwlk  24668  signsplypnf  28373  fzosplitpr  32176
  Copyright terms: Public domain W3C validator