MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitprm1 Structured version   Unicode version

Theorem fzosplitprm1 12018
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 1005 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  ZZ )
2 simp2 1006 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ZZ )
3 zre 10942 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 10942 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 ltle 9723 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
63, 4, 5syl2an 479 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  A  <_  B )
)
763impia 1202 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  B )
8 eluz2 11166 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <_  B ) )
91, 2, 7, 8syl3anbrc 1189 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ( ZZ>= `  A )
)
10 fzosplitsn 12017 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )
119, 10syl 17 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  { B }
) )
12 zcn 10943 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
13 ax-1cn 9598 . . . . . . 7  |-  1  e.  CC
14 npcan 9885 . . . . . . . 8  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1514eqcomd 2430 . . . . . . 7  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1612, 13, 15sylancl 666 . . . . . 6  |-  ( B  e.  ZZ  ->  B  =  ( ( B  -  1 )  +  1 ) )
17163ad2ant2 1027 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1817oveq2d 6318 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( A..^ ( ( B  -  1 )  +  1 ) ) )
19 peano2zm 10981 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
20193ad2ant2 1027 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ZZ )
21 zltlem1 10990 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  A  <_  ( B  - 
1 ) ) )
2221biimp3a 1364 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  ( B  -  1 ) )
23 eluz2 11166 . . . . . 6  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  ( B  -  1 )  e.  ZZ  /\  A  <_ 
( B  -  1 ) ) )
241, 20, 22, 23syl3anbrc 1189 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ( ZZ>= `  A
) )
25 fzosplitsn 12017 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2624, 25syl 17 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2718, 26eqtrd 2463 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2827uneq1d 3619 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ B )  u.  { B }
)  =  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } ) )
29 unass 3623 . . 3  |-  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )
30 df-pr 3999 . . . . . 6  |-  { ( B  -  1 ) ,  B }  =  ( { ( B  - 
1 ) }  u.  { B } )
3130eqcomi 2435 . . . . 5  |-  ( { ( B  -  1 ) }  u.  { B } )  =  {
( B  -  1 ) ,  B }
3231a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( { ( B  - 
1 ) }  u.  { B } )  =  { ( B  - 
1 ) ,  B } )
3332uneq2d 3620 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3429, 33syl5eq 2475 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3511, 28, 343eqtrd 2467 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    u. cun 3434   {csn 3996   {cpr 3998   class class class wbr 4420   ` cfv 5598  (class class class)co 6302   CCcc 9538   RRcr 9539   1c1 9541    + caddc 9543    < clt 9676    <_ cle 9677    - cmin 9861   ZZcz 10938   ZZ>=cuz 11160  ..^cfzo 11916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-n0 10871  df-z 10939  df-uz 11161  df-fz 11786  df-fzo 11917
This theorem is referenced by:  numclwwlkovf2ex  25800
  Copyright terms: Public domain W3C validator