MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzomaxdiflem Structured version   Unicode version

Theorem fzomaxdiflem 13384
Description: Lemma for fzomaxdif 13385. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  e.  ( 0..^ ( D  -  C
) ) )

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 11918 . . . . . . 7  |-  ( B  e.  ( C..^ D
)  ->  B  e.  ZZ )
21adantl 467 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  e.  ZZ )
3 elfzoelz 11918 . . . . . . 7  |-  ( A  e.  ( C..^ D
)  ->  A  e.  ZZ )
43adantr 466 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  A  e.  ZZ )
52, 4zsubcld 11045 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  e.  ZZ )
65zred 11040 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  e.  RR )
76adantr 466 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  e.  RR )
82zred 11040 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  e.  RR )
94zred 11040 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  A  e.  RR )
108, 9subge0d 10202 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( 0  <_  ( B  -  A )  <->  A  <_  B ) )
1110biimpar 487 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
0  <_  ( B  -  A ) )
12 absid 13338 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <_  ( B  -  A ) )  -> 
( abs `  ( B  -  A )
)  =  ( B  -  A ) )
137, 11, 12syl2anc 665 . 2  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  =  ( B  -  A ) )
14 elfzoel1 11916 . . . . . . . 8  |-  ( B  e.  ( C..^ D
)  ->  C  e.  ZZ )
1514adantl 467 . . . . . . 7  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  e.  ZZ )
1615zred 11040 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  e.  RR )
178, 16resubcld 10046 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  C )  e.  RR )
18 elfzoel2 11917 . . . . . . . 8  |-  ( B  e.  ( C..^ D
)  ->  D  e.  ZZ )
1918adantl 467 . . . . . . 7  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  D  e.  ZZ )
2019, 15zsubcld 11045 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( D  -  C )  e.  ZZ )
2120zred 11040 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( D  -  C )  e.  RR )
22 elfzole1 11926 . . . . . . 7  |-  ( A  e.  ( C..^ D
)  ->  C  <_  A )
2322adantr 466 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  <_  A )
2416, 9, 8, 23lesub2dd 10229 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  <_  ( B  -  C )
)
2519zred 11040 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  D  e.  RR )
26 elfzolt2 11927 . . . . . . 7  |-  ( B  e.  ( C..^ D
)  ->  B  <  D )
2726adantl 467 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  <  D )
288, 25, 16, 27ltsub1dd 10224 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  C )  <  ( D  -  C )
)
296, 17, 21, 24, 28lelttrd 9792 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  <  ( D  -  C )
)
3029adantr 466 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  <  ( D  -  C ) )
31 0zd 10949 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  0  e.  ZZ )
32 elfzo 11920 . . . . 5  |-  ( ( ( B  -  A
)  e.  ZZ  /\  0  e.  ZZ  /\  ( D  -  C )  e.  ZZ )  ->  (
( B  -  A
)  e.  ( 0..^ ( D  -  C
) )  <->  ( 0  <_  ( B  -  A )  /\  ( B  -  A )  <  ( D  -  C
) ) ) )
335, 31, 20, 32syl3anc 1264 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( B  -  A )  e.  ( 0..^ ( D  -  C ) )  <-> 
( 0  <_  ( B  -  A )  /\  ( B  -  A
)  <  ( D  -  C ) ) ) )
3433adantr 466 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( ( B  -  A )  e.  ( 0..^ ( D  -  C ) )  <->  ( 0  <_  ( B  -  A )  /\  ( B  -  A )  <  ( D  -  C
) ) ) )
3511, 30, 34mpbir2and 930 . 2  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  e.  ( 0..^ ( D  -  C
) ) )
3613, 35eqeltrd 2517 1  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  e.  ( 0..^ ( D  -  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   RRcr 9537   0cc0 9538    < clt 9674    <_ cle 9675    - cmin 9859   ZZcz 10937  ..^cfzo 11913   abscabs 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278
This theorem is referenced by:  fzomaxdif  13385
  Copyright terms: Public domain W3C validator