MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzofzim Structured version   Unicode version

Theorem fzofzim 11846
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  K  e.  ( 0..^ M ) )

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 11773 . . . 4  |-  ( K  e.  ( 0 ... M )  <->  ( K  e.  NN0  /\  M  e. 
NN0  /\  K  <_  M ) )
2 simpl1 997 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  K  e.  NN0 )
3 necom 2723 . . . . . . . . 9  |-  ( K  =/=  M  <->  M  =/=  K )
4 nn0re 10800 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  K  e.  RR )
5 nn0re 10800 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  M  e.  RR )
6 ltlen 9675 . . . . . . . . . . . . 13  |-  ( ( K  e.  RR  /\  M  e.  RR )  ->  ( K  <  M  <->  ( K  <_  M  /\  M  =/=  K ) ) )
74, 5, 6syl2an 475 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <  M  <->  ( K  <_  M  /\  M  =/=  K ) ) )
87bicomd 201 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  <->  K  <  M ) )
9 elnn0z 10873 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
10 0red 9586 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
0  e.  RR )
11 zre 10864 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ZZ  ->  K  e.  RR )
1211adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  ->  K  e.  RR )
135adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  ->  M  e.  RR )
14 lelttr 9664 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  K  e.  RR  /\  M  e.  RR )  ->  (
( 0  <_  K  /\  K  <  M )  ->  0  <  M
) )
1510, 12, 13, 14syl3anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( 0  <_  K  /\  K  <  M
)  ->  0  <  M ) )
16 nn0z 10883 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  M  e.  ZZ )
17 elnnz 10870 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
1817simplbi2 623 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ZZ  ->  (
0  <  M  ->  M  e.  NN ) )
1916, 18syl 16 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  ( 0  <  M  ->  M  e.  NN ) )
2019adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( 0  <  M  ->  M  e.  NN ) )
2115, 20syld 44 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( ( 0  <_  K  /\  K  <  M
)  ->  M  e.  NN ) )
2221expd 434 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  M  e.  NN0 )  -> 
( 0  <_  K  ->  ( K  <  M  ->  M  e.  NN ) ) )
2322impancom 438 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  <_  K )  -> 
( M  e.  NN0  ->  ( K  <  M  ->  M  e.  NN ) ) )
249, 23sylbi 195 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <  M  ->  M  e.  NN ) ) )
2524imp 427 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <  M  ->  M  e.  NN ) )
268, 25sylbid 215 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  ->  M  e.  NN ) )
2726expd 434 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <_  M  ->  ( M  =/=  K  ->  M  e.  NN ) ) )
283, 27syl7bi 230 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( K  <_  M  ->  ( K  =/=  M  ->  M  e.  NN ) ) )
29283impia 1191 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  M  e.  NN ) )
3029imp 427 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  M  e.  NN )
318biimpd 207 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  M  e.  NN0 )  -> 
( ( K  <_  M  /\  M  =/=  K
)  ->  K  <  M ) )
3231exp4b 605 . . . . . . . . 9  |-  ( K  e.  NN0  ->  ( M  e.  NN0  ->  ( K  <_  M  ->  ( M  =/=  K  ->  K  <  M ) ) ) )
33323imp 1188 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( M  =/=  K  ->  K  <  M ) )
343, 33syl5bi 217 . . . . . . 7  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  K  <  M ) )
3534imp 427 . . . . . 6  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  ->  K  <  M )
362, 30, 353jca 1174 . . . . 5  |-  ( ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  /\  K  =/=  M )  -> 
( K  e.  NN0  /\  M  e.  NN  /\  K  <  M ) )
3736ex 432 . . . 4  |-  ( ( K  e.  NN0  /\  M  e.  NN0  /\  K  <_  M )  ->  ( K  =/=  M  ->  ( K  e.  NN0  /\  M  e.  NN  /\  K  < 
M ) ) )
381, 37sylbi 195 . . 3  |-  ( K  e.  ( 0 ... M )  ->  ( K  =/=  M  ->  ( K  e.  NN0  /\  M  e.  NN  /\  K  < 
M ) ) )
3938impcom 428 . 2  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  ( K  e. 
NN0  /\  M  e.  NN  /\  K  <  M
) )
40 elfzo0 11840 . 2  |-  ( K  e.  ( 0..^ M )  <->  ( K  e. 
NN0  /\  M  e.  NN  /\  K  <  M
) )
4139, 40sylibr 212 1  |-  ( ( K  =/=  M  /\  K  e.  ( 0 ... M ) )  ->  K  e.  ( 0..^ M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823    =/= wne 2649   class class class wbr 4439  (class class class)co 6270   RRcr 9480   0cc0 9481    < clt 9617    <_ cle 9618   NNcn 10531   NN0cn0 10791   ZZcz 10860   ...cfz 11675  ..^cfzo 11799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800
This theorem is referenced by:  cshwshashlem1  14664  clwwisshclwwn  25010
  Copyright terms: Public domain W3C validator