MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoend Structured version   Unicode version

Theorem fzoend 11860
Description: The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoend  |-  ( A  e.  ( A..^ B
)  ->  ( B  -  1 )  e.  ( A..^ B ) )

Proof of Theorem fzoend
StepHypRef Expression
1 id 22 . . . . 5  |-  ( A  e.  ( A..^ B
)  ->  A  e.  ( A..^ B ) )
2 elfzoel2 11785 . . . . . 6  |-  ( A  e.  ( A..^ B
)  ->  B  e.  ZZ )
3 fzoval 11787 . . . . . 6  |-  ( B  e.  ZZ  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
42, 3syl 16 . . . . 5  |-  ( A  e.  ( A..^ B
)  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
51, 4eleqtrd 2550 . . . 4  |-  ( A  e.  ( A..^ B
)  ->  A  e.  ( A ... ( B  -  1 ) ) )
6 elfzuz3 11674 . . . 4  |-  ( A  e.  ( A ... ( B  -  1
) )  ->  ( B  -  1 )  e.  ( ZZ>= `  A
) )
75, 6syl 16 . . 3  |-  ( A  e.  ( A..^ B
)  ->  ( B  -  1 )  e.  ( ZZ>= `  A )
)
8 eluzfz2 11683 . . 3  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( B  -  1 )  e.  ( A ... ( B  -  1 ) ) )
97, 8syl 16 . 2  |-  ( A  e.  ( A..^ B
)  ->  ( B  -  1 )  e.  ( A ... ( B  -  1 ) ) )
109, 4eleqtrrd 2551 1  |-  ( A  e.  ( A..^ B
)  ->  ( B  -  1 )  e.  ( A..^ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   ` cfv 5579  (class class class)co 6275   1c1 9482    - cmin 9794   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661  ..^cfzo 11781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-neg 9797  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782
This theorem is referenced by:  fzo0end  11861  ssfzo12  11862  efgsdmi  16539  efgs1b  16543  clwlkisclwwlklem1  24449  fzoopth  31764
  Copyright terms: Public domain W3C validator