MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to3tp Structured version   Unicode version

Theorem fzo0to3tp 11903
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Assertion
Ref Expression
fzo0to3tp  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }

Proof of Theorem fzo0to3tp
StepHypRef Expression
1 3z 10918 . . 3  |-  3  e.  ZZ
2 fzoval 11827 . . 3  |-  ( 3  e.  ZZ  ->  (
0..^ 3 )  =  ( 0 ... (
3  -  1 ) ) )
31, 2ax-mp 5 . 2  |-  ( 0..^ 3 )  =  ( 0 ... ( 3  -  1 ) )
4 3m1e2 10673 . . . 4  |-  ( 3  -  1 )  =  2
5 2cn 10627 . . . . 5  |-  2  e.  CC
65addid2i 9785 . . . 4  |-  ( 0  +  2 )  =  2
74, 6eqtr4i 2489 . . 3  |-  ( 3  -  1 )  =  ( 0  +  2 )
87oveq2i 6307 . 2  |-  ( 0 ... ( 3  -  1 ) )  =  ( 0 ... (
0  +  2 ) )
9 0z 10896 . . 3  |-  0  e.  ZZ
10 fztp 11762 . . . 4  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) } )
11 eqidd 2458 . . . . 5  |-  ( 0  e.  ZZ  ->  0  =  0 )
12 0p1e1 10668 . . . . . 6  |-  ( 0  +  1 )  =  1
1312a1i 11 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0  +  1 )  =  1 )
146a1i 11 . . . . 5  |-  ( 0  e.  ZZ  ->  (
0  +  2 )  =  2 )
1511, 13, 14tpeq123d 4126 . . . 4  |-  ( 0  e.  ZZ  ->  { 0 ,  ( 0  +  1 ) ,  ( 0  +  2 ) }  =  { 0 ,  1 ,  2 } )
1610, 15eqtrd 2498 . . 3  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 } )
179, 16ax-mp 5 . 2  |-  ( 0 ... ( 0  +  2 ) )  =  { 0 ,  1 ,  2 }
183, 8, 173eqtri 2490 1  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1395    e. wcel 1819   {ctp 4036  (class class class)co 6296   0cc0 9509   1c1 9510    + caddc 9512    - cmin 9824   2c2 10606   3c3 10607   ZZcz 10885   ...cfz 11697  ..^cfzo 11821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-fzo 11822
This theorem is referenced by:  trgcgrg  24032  3v3e3cycl1  24771  constr3trllem1  24777  constr3trllem2  24778  constr3trllem5  24781
  Copyright terms: Public domain W3C validator