MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn Structured version   Unicode version

Theorem fzn 11714
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )

Proof of Theorem fzn
StepHypRef Expression
1 fzn0 11712 . . . 4  |-  ( ( M ... N )  =/=  (/)  <->  N  e.  ( ZZ>=
`  M ) )
2 eluz 11107 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
31, 2syl5bb 257 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =/=  (/)  <->  M  <_  N ) )
4 zre 10880 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  RR )
5 zre 10880 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
6 lenlt 9675 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
74, 5, 6syl2an 477 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
83, 7bitr2d 254 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  < 
M  <->  ( M ... N )  =/=  (/) ) )
98necon4bbid 2720 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   (/)c0 3790   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503    < clt 9640    <_ cle 9641   ZZcz 10876   ZZ>=cuz 11094   ...cfz 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-pre-lttri 9578  ax-pre-lttrn 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-neg 9820  df-z 10877  df-uz 11095  df-fz 11685
This theorem is referenced by:  fz1n  11716  fz10  11718  fzsuc2  11749  fzon  11827  isumsplit  13632  arisum2  13652  prmreclem4  14313  prmreclem5  14314  vdwap0  14370  abelthlem6  22698  log2ublem3  23145  ppi1  23304  cht1  23305  ppiublem2  23344  lgsdir2lem3  23466  wlkv0  24583  fz0n  28935  risefall0lem  29075  fdc  30165  mettrifi  30177  fzisoeu  31400
  Copyright terms: Public domain W3C validator