MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1 Structured version   Unicode version

Theorem fzm1 11758
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )

Proof of Theorem fzm1
StepHypRef Expression
1 eluzel2 11087 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 11091 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 elfz1 11677 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
41, 2, 3syl2anc 661 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) ) )
5 simp1 996 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  K  e.  ZZ )
65a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  -.  K  =  N )  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
)  ->  K  e.  ZZ ) )
7 simp2 997 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  M  <_  K )
87a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  -.  K  =  N )  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
)  ->  M  <_  K ) )
9 zre 10868 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ZZ  ->  K  e.  RR )
10 eluzelre 11092 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
11 ltlen 9686 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( K  <  N  <->  ( K  <_  N  /\  N  =/=  K ) ) )
129, 10, 11syl2anr 478 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( K  <  N  <->  ( K  <_  N  /\  N  =/= 
K ) ) )
13 nesym 2739 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =/=  K  <->  -.  K  =  N )
1413anbi2i 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  <_  N  /\  N  =/=  K )  <->  ( K  <_  N  /\  -.  K  =  N ) )
15 ancom 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  <_  N  /\  -.  K  =  N
)  <->  ( -.  K  =  N  /\  K  <_  N ) )
1614, 15bitri 249 . . . . . . . . . . . . . . . . 17  |-  ( ( K  <_  N  /\  N  =/=  K )  <->  ( -.  K  =  N  /\  K  <_  N ) )
1712, 16syl6bb 261 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( K  <  N  <->  ( -.  K  =  N  /\  K  <_  N ) ) )
1817biimpar 485 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  K  e.  ZZ )  /\  ( -.  K  =  N  /\  K  <_  N ) )  ->  K  <  N )
1918an4s 824 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  -.  K  =  N
)  /\  ( K  e.  ZZ  /\  K  <_  N ) )  ->  K  <  N )
20 zltlem1 10915 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
212, 20sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  N  e.  ( ZZ>= `  M ) )  -> 
( K  <  N  <->  K  <_  ( N  - 
1 ) ) )
2221biimpd 207 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  ZZ  /\  N  e.  ( ZZ>= `  M ) )  -> 
( K  <  N  ->  K  <_  ( N  -  1 ) ) )
2322ancoms 453 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( K  <  N  ->  K  <_  ( N  -  1 ) ) )
2423ad2ant2r 746 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  -.  K  =  N
)  /\  ( K  e.  ZZ  /\  K  <_  N ) )  -> 
( K  <  N  ->  K  <_  ( N  -  1 ) ) )
2519, 24mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  -.  K  =  N
)  /\  ( K  e.  ZZ  /\  K  <_  N ) )  ->  K  <_  ( N  - 
1 ) )
26253adantr2 1156 . . . . . . . . . . . 12  |-  ( ( ( N  e.  (
ZZ>= `  M )  /\  -.  K  =  N
)  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  K  <_  ( N  -  1 ) )
2726ex 434 . . . . . . . . . . 11  |-  ( ( N  e.  ( ZZ>= `  M )  /\  -.  K  =  N )  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
)  ->  K  <_  ( N  -  1 ) ) )
286, 8, 273jcad 1177 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  -.  K  =  N )  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
)  ->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  ( N  -  1 ) ) ) )
2928ex 434 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( -.  K  =  N  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  -> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  ( N  - 
1 ) ) ) ) )
30 1z 10894 . . . . . . . . . . . 12  |-  1  e.  ZZ
31 zsubcl 10905 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  ->  ( N  -  1 )  e.  ZZ )
322, 30, 31sylancl 662 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  1 )  e.  ZZ )
33 elfz1 11677 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  ( N  -  1 ) ) ) )
341, 32, 33syl2anc 661 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... ( N  -  1 ) )  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  ( N  -  1 ) ) ) )
3534biimprd 223 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_ 
( N  -  1 ) )  ->  K  e.  ( M ... ( N  -  1 ) ) ) )
3629, 35syl6d 69 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( -.  K  =  N  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  K  e.  ( M ... ( N  -  1 ) ) ) ) )
3736com23 78 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  ->  ( -.  K  =  N  ->  K  e.  ( M ... ( N  - 
1 ) ) ) ) )
384, 37sylbid 215 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  ->  ( -.  K  =  N  ->  K  e.  ( M ... ( N  -  1
) ) ) ) )
3938imp 429 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( -.  K  =  N  ->  K  e.  ( M ... ( N  - 
1 ) ) ) )
4039orrd 378 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( K  =  N  \/  K  e.  ( M ... ( N  -  1 ) ) ) )
4140orcomd 388 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) )
4241ex 434 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  ->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
43 fzssp1 11726 . . . . 5  |-  ( M ... ( N  - 
1 ) )  C_  ( M ... ( ( N  -  1 )  +  1 ) )
442zcnd 10967 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
45 ax-1cn 9550 . . . . . . 7  |-  1  e.  CC
46 npcan 9829 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
4744, 45, 46sylancl 662 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  -  1 )  +  1 )  =  N )
4847oveq2d 6300 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( ( N  - 
1 )  +  1 ) )  =  ( M ... N ) )
4943, 48syl5sseq 3552 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( N  -  1 ) )  C_  ( M ... N ) )
5049sseld 3503 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... ( N  -  1 ) )  ->  K  e.  ( M ... N ) ) )
51 eluzfz2 11694 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
52 eleq1 2539 . . . 4  |-  ( K  =  N  ->  ( K  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
5351, 52syl5ibrcom 222 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  =  N  ->  K  e.  ( M ... N
) ) )
5450, 53jaod 380 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N )  ->  K  e.  ( M ... N
) ) )
5542, 54impbid 191 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e.  ( M ... ( N  -  1 ) )  \/  K  =  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   1c1 9493    + caddc 9495    < clt 9628    <_ cle 9629    - cmin 9805   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673
This theorem is referenced by:  bcpasc  12367  phibndlem  14159  lgsdir2lem2  23355  acongeq  30553  jm2.26lem3  30575
  Copyright terms: Public domain W3C validator