MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzind2 Structured version   Visualization version   Unicode version

Theorem fzind2 12030
Description: Induction on the integers from  M to  N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 11040 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
fzind2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fzind2.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fzind2.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fzind2.5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
fzind2.6  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fzind2  |-  ( K  e.  ( M ... N )  ->  ta )
Distinct variable groups:    x, K    x, M, y    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 11798 . . 3  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 anass 655 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
3 df-3an 988 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
43anbi1i 702 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N
) ) )
5 3anass 990 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
65anbi2i 701 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
72, 4, 63bitr4i 281 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
81, 7bitri 253 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
9 fzind2.1 . . 3  |-  ( x  =  M  ->  ( ph 
<->  ps ) )
10 fzind2.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
11 fzind2.3 . . 3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
12 fzind2.4 . . 3  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
13 eluz2 11172 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
14 fzind2.5 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ps )
1513, 14sylbir 217 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )
16 3anass 990 . . . 4  |-  ( ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N )  <->  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )
17 elfzo 11929 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
y  e.  ( M..^ N )  <->  ( M  <_  y  /\  y  < 
N ) ) )
18 fzind2.6 . . . . . . . 8  |-  ( y  e.  ( M..^ N
)  ->  ( ch  ->  th ) )
1917, 18syl6bir 233 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
20193coml 1216 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  y  e.  ZZ )  ->  (
( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
21203expa 1209 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  y  e.  ZZ )  ->  ( ( M  <_  y  /\  y  <  N )  ->  ( ch  ->  th ) ) )
2221impr 625 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  ( M  <_  y  /\  y  <  N ) ) )  ->  ( ch  ->  th ) )
2316, 22sylan2b 478 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
249, 10, 11, 12, 15, 23fzind 11040 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )  ->  ta )
258, 24sylbi 199 1  |-  ( K  e.  ( M ... N )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   class class class wbr 4405   ` cfv 5585  (class class class)co 6295   1c1 9545    + caddc 9547    < clt 9680    <_ cle 9681   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791  ..^cfzo 11922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-fzo 11923
This theorem is referenced by:  seqcaopr3  12255  seqf1olem2a  12258  prodfn0  13962  prodfrec  13963  smupval  14474  smueqlem  14476  dvntaylp  23338  taylthlem1  23340  pntpbnd1  24436  pntlemf  24455  fmul01  37668  dvnmptdivc  37823  dvnmul  37828  iblspltprt  37860  itgspltprt  37866  stoweidlem3  37873  carageniuncllem1  38352  caratheodorylem1  38357
  Copyright terms: Public domain W3C validator